• Title/Summary/Keyword: Fluoride solution

Search Result 280, Processing Time 0.029 seconds

Determination of fluoride in fluorite mine wastewater by ion chromatography with post-wash technique (후세척-이온크로마토그래피를 이용한 형석 광산 폐수 중 플루오라이드 정량)

  • Song, Kyung-Sun;Eum, Chul-Hun;Kim, Sang-Yeon
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.383-388
    • /
    • 2006
  • Simple post-wash method by ion chromatography (IC) was established for the rapid and precise determination of fluoride ion in wastewater from mine in fluorite mineralized area. High sulfate in sample was retained in a pre-column and less strongly held fluoride ion was transferred to the principal separation system using modified conventional IC with switching technique. An analytical column with high capacity (AS 9 HC) was used as a pre-column to retain the amount of high sulfate. A guard column (AG 14) as a separation column was used to increase the response of fluoride and reduce the system pressure. According to the recovery of fluoride ion with one detector and the observation of sulfate peak with another conductivity detector, the optimum switching time of 10-port chromatographic injector was 4.3 min. The limit of detection (S/N = 3) of fluoride in synthetic solution containing $500mg\;L^{-1}$ sulfate was $2.4{\mu}g/L$, with $25{\mu}L$ sample volume.

A Study on Ni Electroless Plating Process for Solder Bump COG Technology (COG용 Solder Bump 제작을 위한 Ni 무전해 도금 공정에 관한 연구)

  • Han, Jeong-In
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.794-801
    • /
    • 1995
  • To connect the driver IC and Al coated glass, a method has been developed to plate electrolessly Ni on Al/PR system. It Is necessary to pretreat Al to remove oxide film before plating. In order to find pretreatment process which does not damage photoresist or glass, alkaline and fluoride zincate process have been investigated. Because photoresist and aluminum thin film can easily dissolve in alkaline solution, it is considered that the fluoride zincate process was a suitable one. After immersion in the zincate solution containing 1.5 g/$\ell$ ammonium bifluoride and 100 g/$\ell$ zinc sulfate, electroless nickel plating could be performed. The additive in the zincate solution and thiourea in the plating solution increased smoothness of the plated surface. Acld dip could improve the uniformit of the surface.

  • PDF

Electrochemical Synthesis of Octahedral Nanostructured PbF2

  • Lee, Joon-Ho;Choi, Jin-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.463-466
    • /
    • 2011
  • In this work, we investigate anodization of Pb in ethylene glycol containing small amount of $NH_4F$, demonstrating that ${\beta}-PbF_2$ particles with octahedral morphology can be prepared by adjusting the applied potential and anodizing time. FE-SEM images and XRD measurements of anodic nanostructures as a function of anodizing time clearly show that PbO is first formed on Pb. Subsequently, a local dissolution of PbO leads to formation of skeleton structure of PbO, releasing $Pb^{2+}$ ions in the electrolyte. The lead ions can be precipitated on the walls or intersection of the skeleton walls when the concentration of lead ions is saturated. The method described in this article shows the feasibility of formation of metal fluoride crystal by anodization of metal in a fluoride containing solution.

Fundamental Studies on the Calcium Precipitation for the Reuse of Wastewater Containing Phosphate (칼슘 침전처리에 의한 인산폐수 재사용에 관한 연구)

  • Kim Yaung-Im;Kim Dong-Su
    • Resources Recycling
    • /
    • v.12 no.4
    • /
    • pp.38-43
    • /
    • 2003
  • Phosphate is an essential material for the growth of organisms. However. since relatively small amount is required. a large amount of phosphate is abandoned in wastes and wastewater. which contaminate the ecological environment including aquatic system. Purpose of this study is to treat especially high concentrated phosphate wastewater by use of calcium precipitation method. The pH range considered was from 6 to 12 and the maximum removal of phosphate was attained at pH 12. The con-centration of phosphate was observed to decrease rapidly until a half amount of calcium ion to its equivalent for the formation of calcium phosphate precipitate was added. which resulted in the decrease of the remaining concentration of phosphate down to 0.0027 mM. The effect of fluoride ion was examined and the concentration ratio between the phosphate and fluoride ion did not have any significant influence on the removal efficiency of phosphate. The effect of pH was also investigated. With the increasing of the pH in solution, the removal rate of phosphate was increased. Also it was investigated that the effect of fluoride on the phosphate removal was not significant.

Eligibility of Fluoride Ion as A Tracer of Wastewaters and Distribution of Fluoride in Jinhae Bay (해수오염원추적자로서의 플루오르화물이온 및 진해만의 플루오르화물이온농도분포)

  • Won, Jong Hun;Park, Kil Soon
    • 한국해양학회지
    • /
    • v.8 no.1
    • /
    • pp.9-21
    • /
    • 1973
  • When industrial wastewater containing fluoride runs into the ocean, approximately 0.1ppm of F$\^$-/ will react with seawater and will be eventually lost, and the remaining F$\^$-/ can be determined withe the ALC. Therefore F$\^$-/ is eligible to be used as a tracer of pollutant which contains fluoride. Determination of F$\^$-/ in the seawater with the Dotite reagent, Alfusone, has been made by the following method: To 10 ml of water sample, 1 ml of buffer solution (pH=4.0), 8 ml of acetone, and 1ml of 10% Alfusone were added and diluted to 25ml with distilled water. After 20 minutes the absorbance at 620 nm against a reagent blank was measured. The distributions of F$\^$-/ in Jinhae Bay has been made on the basis of water samples collected from 103 different sampling stations occupied in Jinhae Bay. The water samplings, three in the spring tide and two in the neap tide, were taken from surface layer during the flood and ebb tide periods respectively. The average concentration of F$\^$-/ in the bay, except the area to which the wastewater runs off from the Chemical plant, was 1.45 ppm(1.07-6.33ppm), and that of F$\^$-/ in the plant effluent was 330ppm, occasionally up to 562 ppm. Thus high levels of F$\^$-/ in the bay are strongly correlated to the amount of effluent from the plant, and waters of Jinhae Bay contains at least 0.13% of the plant effluent.

  • PDF

Preparation and Properties of Poly(vinylidene fluoride) Multilayer Films (Poly(vinylidene fluoride) 다층 필름의 제조 및 특성)

  • Son, Tae-Won;Kim, Jong-Hwan;Choi, Won-Mi;Han, Fei-Fei;Kwon, Oh-Kyeong
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.130-135
    • /
    • 2011
  • Along with the fast development of electronics, the demands of portable electronics and wireless sensors are growing rapidly. The need for self-powering materials capable of powering the electrical devices attached to them is increasing, The piezoelectric effect of polyvinylidene fluoride (PVDF) can be used for this purpose. PVDF has a special crystal structure consisting of a ${\beta}$-phase that can produce piezoelectricity. In this paper, multilayer PVDF films were fabricated to increase the ${\beta}$-phase content. A solution of 10% concentration N;N-dimethylacetamide (DMAc) in PVDF (PVDF/DMAc) was used to fabricate the films via spin coating technique with the following optimum process parameters: a spin rate of 850 rpm, spin time of 60 s, drying temperature of $60^{\circ}C$, and drying time of 30 min, Compared with single-layer PVDF films, the multilayer films exhibited higher ${\beta}$-phase content. The ${\beta}$-phase content of the films increased gradually with increasing number of layers until 4, Maximum ratio of ${\beta}$-phase content was 7.72.

Effects of various toothpastes on remineralization of white spot lesions

  • Jo, Su-Yeon;Chong, Hyun-Jeong;Lee, Eon-Hwa;Chang, Na-Young;Chae, Jong-Moon;Cho, Jin-Hyoung;Kim, Sang-Cheol;Kang, Kyung-Hwa
    • The korean journal of orthodontics
    • /
    • v.44 no.3
    • /
    • pp.113-118
    • /
    • 2014
  • Objective: The purpose of this in vitro study was to examine the effects of fluoridated, casein phosphopeptide-amorphous calcium phosphate complex (CPP-ACP)-containing, and functionalized ${\beta}$-tricalcium phosphate (fTCP)-containing toothpastes on remineralization of white spot lesions (WSLs) by using Quantitative light-induced fluorescence (QLF-D) Biluminator$^{TM}$ 2. Methods: Forty-eight premolars, extracted for orthodontic reasons from 12 patients, with artificially induced WSLs were randomly and equally assigned to four treatment groups: fluoride (1,000 ppm), CPP-ACP, fTCP (with sodium fluoride), and control (deionized water) groups. Specimens were treated twice daily for 2 weeks and stored in saliva solution (1:1 mixture of artificial and human stimulated saliva) otherwise. QLF-D Biluminator$^{TM}$ 2 was used to measure changes in fluorescence, indicating alterations in the mineral contents of the WSLs, immediately before and after the 2 weeks of treatment. Results: Fluorescence greatly increased in the fTCP and CPP-ACP groups compared with the fluoride and control groups, which did not show significant differences. Conclusions: fTCP- and CPP-ACP-containing toothpastes seem to be more effective in reducing WSLs than 1,000-ppm fluoride-containing toothpastes.

THE EFFECT OF TOPICAL FLUORIDES ON SURFACE STRUCTURES OF VARIOUS ESTHETIC RESTORATIVE MATERIALS (불소 제재가 심미 수복 재료의 표면 구조에 미치는 영향)

  • Kim, Un-Yong;Choi, Byung-Jai
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.2
    • /
    • pp.436-448
    • /
    • 1997
  • Topical fluoride application for children is a widely performed procedure in the field of Pediatric Dentistry for its dental caries prevention effects. However, it is recently recognized as having some unwanted effects on several esthetic restorative materials as it roughens the surfaces of the restorative materials. In order to evaluate the surface changes in esthetic restorative materials, the author immersed composite resin, glass ionomer cement, and resin-modified glass ionomer cement specimens in various topical fluoride agents and measured the weight loss and also, examined the specimens under the scanning electron microscope. The followings are the results : 1. All the specimens immersed in APF gel for 4 minutes showed statistically significant weight loss. (paired t-test, P<0.05). 2. There was no statistically significant weight loss for the resin-modified glass ionomer cement and composite resin groups immersed in sodium fluoride solution (paired t-test, P>0.05). 3. When the glass ionomer cement group was immersed in APF gel for 1 and 4 minutes, there was a statistically significant weight loss compare to other esthetic restorative materials (ANOVA, P<0.05). 4. In the resin-modified glass ionomer cement group and the composite resin group, weight loss in the APF gel 4 minutes immersion group was greater than the 1 minute immersion group, and it was statistically significant (ANOVA, P<0.05). 5. When the specimens were examined under scanning electron microscope, the surface changes were greatest in the order of glass ionomer cement, resin-modified glass ionomer cement, composite resin and also in the order of APF gel 4 minute immersion group, 1 minute immersion group, sodium fluoride immersion group, and control group.

  • PDF

Synthesis of Poly(vinylidene fluoride-co-hexafluoropropylene) (비닐리덴 플루오라이드와 헥사플루오르프로필렌 공중합체의 합성)

  • Lee, Sang Goo;Ha, Jong-Wook;Park, In Jun;Lee, Soo-Bok;Lee, Jong Dae
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.74-79
    • /
    • 2013
  • Polyvinylidene fluoride (PVDF) and its copolymer with hexafluoropropylene (HFP) were successfully prepared from free radical solution polymerizations using diisopropyl peroxidicarbonate (DIPPDC) in the presence of 1,1,2-trichlorotrifluoroethane (R-113). The reactivity ratios of VDF and HFP were estimated as$r_{VDF}=2.06{\pm}0.03$ and $r_{HFP}{\approx}0$. This result indicates that HFP cannot undergo self propagation. The weight-average molecular weight and molecular weight distribution of copolymers were found to decrease with increasing HFP content. The melting temperature of copolymers linearly decreased with the increase of HFP content because of the introduction of HFP. Moreover, no melting peak was observed for the copolymers with high HFP content. The glass transition temperature of copolymers gradually increased with the increase of HFP content due to the restricted flexibility of the polymer chains.

Influences of Potassium Fluoride (KF) Addition on the Surface Characteristics in Plasma Electrolytic Oxidation of Marine Grade Al Alloy (해양환경용 알루미늄 합금의 플라즈마 전해 산화 시 표면 특성에 관한 불화칼륨(KF)의 영향)

  • Lee, Jung-Hyung;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.280-285
    • /
    • 2016
  • In this study, we investigated the influences of potassium fluoride(KF) addition on the surface characteristics of plasma electrolytic oxidation(PEO) coating produced on Al alloy. The PEO of marine grade Al alloy(5083 grade) was conducted in KOH 1g/L solution adding different concentrations of KF(0, 1 and 2 g/L) under a galvanostatic regime. With KF addition, unusual behavior was observed on the voltage-time characteristic curves, which can be characterized by the following process: (i) initial rapid increase in voltage (ii) a short plateau after 1st breakdown (iii) gradual increase in voltage (iv) intermittent fluctuation of voltage after 2nd breakdown. The SEM observation revealed irregular surface morphology with KF addition, as compared with one formed without KF addition, which had a reticulate structure. The XRD analysis detected the formation of aluminium hydroxide fluoride hydrate($H_{4.76}Al_2F_{3.24}O_{3.76}$) on surface grown by PEO process with KF. Particularly, at very early stage of the process (~ 120 s), thin film was formed having nanoporous structure, and F element was confirmed on surface by EDS analysis. The thickness and surface roughness of the coating increased with increasing KF concentration. As a result, KF addition was found to be less beneficial influences on PEO of marine grade Al alloy, and therefore needs further research to improve its capability.