• Title/Summary/Keyword: Fluoride Wastewater

Search Result 58, Processing Time 0.131 seconds

Inhibition Effects of $Ca^{2+}$ and $F^-$ Ion on Struvite Crystallization ($Ca^{2+}$$F^-$ 이온이 Struvite 결정화 반응에 미치는 영향)

  • Kim, Seung-Ha;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.730-737
    • /
    • 2010
  • It is very important to remove fluoride ion before treating semiconductor wastewater containing high concentration of ammonia, phosphates, and fluoride ions by struvite formation. Calcium ion was generally added for the removal of fluoride ion. However, calcium ions remained after removal of fluoride ion can deteriorate the performance of struvite crystalization. It should be removed completely before struvite formation. In this study, the effect of fluoride and calcium ion concentration on the struvite crystalization was investigated. Removal efficiencies of ortho-phosphate with struvite formation were more abruptly decreased than those of ammonium nitrogen, as increase of fluoride ion concentration in synthetic wastewater. The structures of struvite formed in synthetic wastewater containing calcium ion of up to 500 mg/L were identical. Purity of struvite was deteriorated as increase of calcium ion over 500 mg/L. Removal efficiencies of ammonium nitrogen were more decreased than those of phosphate ions as increase of cacium ion in synthetic wastewater.

A Study on the Behavior of Residual Fluoride in Water Treatment Process (정수처리과정(淨水處理過程)에서의 잔류불소(殘留弗素)이온 거동(擧動)에 관한 연구(硏究))

  • Lee, Taek-Soon;Moon, Byung-Hyun;Seo, Gyu-Tae;Jin, Hong-Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.2
    • /
    • pp.164-173
    • /
    • 2000
  • Fluoridation of drinking water to a level of about 0.8mg/l (below 1.5mg/l) for reducing the incidence of tooth decay is recommended. However, concerns about potential problems of unknown effects and overdosing hinders the fluoridation. This study describes the work performed to obtain information on the behavior of fluoride under various conditions in the process of water fluoridation. Effects of water treatment chemicals, water treatment unit, and water distribution on water fluoridation were investigated at both lab and an actual water treatment plant. Residual fluoride concentration was not affected by lime and chlorine dosage up to 20mg/l. Flocculation with PAC slightly decreased the residual fluoride concentration as PAC dosage increased. Average fluoride concentration of 0.87mg/l at an intake basin was decreased to 0.83mg/l by sedimentation, 0.81mg/l by dual media(sand+anthracite) filtration, and 0.79mg/l by granular activated carbon filtration in the water treatment plant.

  • PDF

The Influence of Aqueous Ionic, Condition on the Adsorption Features of Fluoride Ion on Waste Oyster Shell (수중 이온 환경이 폐굴껍질에 대한 불소 이온의 흡착 양상에 미치는 영향)

  • Lee, Jin-Sook;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.314-318
    • /
    • 2007
  • The feasibility of the employment of waste oyster shell as an adsorbent for fluoride ion has been tested by considering the effect ionic condition on the adsorption of fluoride ion on oyster shell. The adsorption capacity of oyster shell for fluoride ion was found not to be significantly influenced by the ionic strength of aqueous environment. The existence of complexing agent such as nitrilotriacetic acid in wastewater decreased the adsorbed amount of fluoride ion by forming a stable complex of $CaT^-$ and the adsorption reaction of fluoride ion on oyster shell was examined to be endothermic. The coexisting heavy metal ionic adsorbate in wastewater hindered the adsorption of fluoride ion, however, its adsorbed amount was increased as the particulate size of adsorbent was decreased. Finally, a serial adsorption column test has been conducted for a practical application of adsorption process and the breakthrough of the column adsorption was observed in 22 hours under the experimental condition.

Fluoride and nitrate removal in small water treatment plants using electro-coagulation (전기응집을 이용한 소규모 수도시설의 질산성질소와 불소이온 제거)

  • Han, Song-Hee;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.767-775
    • /
    • 2011
  • In this study we verified if the electro-coagulation process can treat properly the nitrate and fluoride that are not removed well in the conventional small water treatment plants which usually employ chlorination and filtration only. As we gave a change of electrode material and gap-distance between electrodes, removal efficiency of the nitrate and fluoride was determined by electro-coagulation process which were equipped with aluminum and stainless steel (SUS304) electrodes. In addition, electrode durability was investigated by determination of electrodes mass change during the repetitive experiments. Removal efficiency was great when aluminum was used as an anode material. Nitrate removals increased as electric density and number of electrodes increased, but fluoride removal was less sensitive to both parameters than nitrate. After 10 minutes of contact time with the current density from $1{\times}10^{-3}$ to $3{\times}10^{-3}A/cm^{2}$, nitrate and fluoride concentration ranged from 9.2 to 1.2mg/L and from 0.02 to 0.01mg/L, which satisfied the regulation limits. Regardless of the repeating number of experiments, removal efficiency of both ions were almost similar and the change of electrode mass ranged within ${\pm}$0.5%, indicating that the loss of the electrode mass is not so much great under the limited circumstances.

Removal of Fluoride Ions from Electronic Industrial Wastewater Using Lime Stone Slurry (초미분말 석회석 현탁액을 이용한 전자산업 폐수 불소이온 제거연구)

  • Park, Hyeon Soo;Park, Yeon Soo;Jung, Goo Ill;Kim, Jae Woo;Jo, Young Min
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.258-263
    • /
    • 2018
  • This study attempted to utilize ultrafine precipitated calcium carbonate for fluoride removal from the wastewater of electronics industries. An average particle size of the calcium carbonate was $0.96{\mu}m$, and pH of the aqueous slurry was 10 with 70% in mass. The suspension solution showed approximately 2 mL/hr of the sedimentation rate. The present calcium carbonate solution could be comparable to the conventional aqueous calcium source, $Ca(OH)_2$, for the neutralization and removal of fluoride ions. Depending on the amount of an additional alkali source, less amounts of test Ca-source slurries were required to reach the solution pH of 7.0 than that of using the aqueous calcium hydroxide. It was also found from XRD analysis that more calcium fluoride precipitates were formed by the addition of calcium carbonate solution rather than that of calcium hydroxide. In addition, Minteq equilibrium modelling estimated various ion complexes of fluoride and calcium in this process.

Operation Parameters for the Effective Treatment of Steel Wastewater by Rare Earth Oxide and Calcium Hydroxide (효율적 제철폐수의 처리를 위한 희토류 화합물과 칼슘화합물의 운전인자 연구)

  • Lee, Chang-Yong;Lee, Sang-Min;Kim, Wan-Joo;Choi, Ko-Yeol
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.483-489
    • /
    • 2006
  • The behavior of rare earth compounds such as $La_{2}O_{3}$, $CeO_{2}$, and $Ca(OH)_{2}$ on the removal of fluoride and heavy metals in the steel wastewater has been investigated. The removal mechanism of fluoride by rare earth elements has been known to be the formation of insoluble compounds between $F^{-}$ and cations such as $La^{3+}$ and $Ce^{4+}$ produced by the dissociation of rare earth compounds (To reduce the running cost of the fluoride wastewater treatment facility, their fluoride removal efficiencies were compared with those of inexpensive rare earth minerals such as natural lanthanide and cerium compound used as a glass polishing agent). All of the rare earth oxides used in this study showed a higher removal efficiency of fluoride than $Ca(OH)_{2}$ in the wastewater. In the case of artificial HF solution, the removal efficiency of fluoride showed in the order: $CeO_{2}$-mineral < $CeO_{2}$ < $Ca(OH)_{2}$ < $La_{2}O_{3}$-mineral < $La_{2}O_{3}$. However, the removal efficiency of fluoride in the wastewater increased in the following order: $Ca(OH)_{2}$ < $CeO_{2}$ mineral < $CeO_{2}$ < $La_{2}O_{3}$ mineral < $La_{2}O_{3}$. All agents showed high efficiencies for the removal of Mn and total Cr in the rare earth compounds. In the case of $Ca(OH)_{2}$, fluoride removal decreased with increasing pH while. However, the rare earth compounds showed a higher fluoride removal in higher pH condition, the optimum pH condition seemed to be around 7 considering both water quality and fluoride removal. Under the pH 7 condition, the $Ca(OH)_{2}$ was superior to rare earth compounds in Mn removal and the lanthanide was superior to others in total Cr removal.

Fundamental Studies on the Calcium Precipitation for the Reuse of Wastewater Containing Phosphate (칼슘 침전처리에 의한 인산폐수 재사용에 관한 연구)

  • Kim Yaung-Im;Kim Dong-Su
    • Resources Recycling
    • /
    • v.12 no.4
    • /
    • pp.38-43
    • /
    • 2003
  • Phosphate is an essential material for the growth of organisms. However. since relatively small amount is required. a large amount of phosphate is abandoned in wastes and wastewater. which contaminate the ecological environment including aquatic system. Purpose of this study is to treat especially high concentrated phosphate wastewater by use of calcium precipitation method. The pH range considered was from 6 to 12 and the maximum removal of phosphate was attained at pH 12. The con-centration of phosphate was observed to decrease rapidly until a half amount of calcium ion to its equivalent for the formation of calcium phosphate precipitate was added. which resulted in the decrease of the remaining concentration of phosphate down to 0.0027 mM. The effect of fluoride ion was examined and the concentration ratio between the phosphate and fluoride ion did not have any significant influence on the removal efficiency of phosphate. The effect of pH was also investigated. With the increasing of the pH in solution, the removal rate of phosphate was increased. Also it was investigated that the effect of fluoride on the phosphate removal was not significant.

Verification and Calribration of Hydraulic Analysis of Water Supply System Using Fluoride Tracer (불소를 이용한 상수관망 수리해석의 검증 및 보정)

  • Joo, Dae-Sung;Park, No-Suk;Park, Heekyung;Oh, Jung-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.76-82
    • /
    • 1998
  • It is necessary to calculate the accurate velocity from the hydraulic model for the reliable prediction of water quality changes in water supply system. To verify the hydraulic analysis of the water supply system, fluoride was used as a tracer to calculate the travel time from the injection point to the sampling points. Results from this field experiment indicate that fluoride can be a good conservative tracer while it showed a little longitudinal dispersion along the pipe lines. And the velocity from the model was verified by these travel times and calibrated by changing the ratio of the unaccountable water. When the ratio of the unaccountable water. When the ratio of the unaccountable water was 20%, the error between the estimation of hydraulic model and the real travel time was minimum.

  • PDF

Hybrid neutralization and membrane process for fluoride removal from an industrial effluent

  • Meftah, Nouha;Ezzeddine, Abdessalem;Bedoui, Ahmed;Hannachi, Ahmed
    • Membrane and Water Treatment
    • /
    • v.11 no.4
    • /
    • pp.303-312
    • /
    • 2020
  • This study aims to investigate at a laboratory scale fluorides removal from an industrial wastewater having excessive F- concentration through a hybrid process combining neutralization and membrane separation. For the membrane separation operation, both Reverse Osmosis (RO) and Nanofiltration (NF) were investigated and confronted. The optimized neutralization step with hydrated lime allowed reaching fluoride removal rates of 99.1± 0.4 %. To simulate continuous process, consecutive batch treatments with full recirculation of membrane process brines were conducted. Despite the relatively high super saturations with respect to CaF2, no membrane cloaking was observed. The RO polishing treatment allowed decreasing the permeate fluoride concentration to 0.9± 0.3 mg/L with a fluoride rejection rate of 93± 2% at the optimal transmembrane pressure of around 100 psi. When NF membrane was used to treat neutralization filtrate, the permeate fluoride concentration dropped to 1.1± 0.4 mg/L with a fluoride rejection rate of 88± 5% at the optimal pressure of around 80 psi. Thus, with respect to RO, NF allowed roughly 20% decrease of the driving pressure at the expense of only 5% drop of rejection rate. Both NF and RO permeates at optimal operating transmembrane pressures respect environmental regulations for reject streams discharge into the environment.

Investigation on the material properties of Waste Oyster Shell to use as an Adsorbent for Fluoride Ion (불소(弗素) 이온 흡착제(吸着劑)로서의 활용(活用)을 위한 폐(廢)굴껍질의 특성(特性) 분석(分析))

  • Lee, Jin-Suk;Seo, Myung-Soon;Kim, Dong-Su
    • Resources Recycling
    • /
    • v.16 no.3 s.77
    • /
    • pp.12-18
    • /
    • 2007
  • The material properties of waste oyster shell, which is largely generated from the treatment of marine products, have been investigated for its possible utilization as an adsorbent for fluoride ion-containing wastewater. The major composition of waste oyster shell was analyzed to be $CaCO_3$ and loss of 46% in weight reduction occurred during its thermal treatment by the emission of moisture and $CO_2$. The surface structure of oyster shell was decomposed by the heating and its surface potential was negatively increased with pH. As the pH of wastewater was increased, the adsorbed amount of fluoride ion onto oyster shell was decreased and the wastewater was found to be neutralized during adsorption process by ${CO_2}^{3-}$ which generated from the partial dissolution of oyster shell