• Title/Summary/Keyword: Fluorescent Light Source

Search Result 168, Processing Time 0.036 seconds

A Study on the Heat Radiation of LED Luminaires and the Indoor Temperature Increase (LED 등기구의 발열과 실내온도 상승에 관한 연구)

  • Kim, Dong-Geon;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.9
    • /
    • pp.738-742
    • /
    • 2012
  • This paper conducted a study on how the heat radiation of light emitting diode(LED) luminaires affects the indoor temperature increase. The effect was compared with that of a 20 W compact fluorescent lamp(CFL) and a 50 W MR16 halogen lamp which are most widely used inside of cruises, a LED downlight and a 4W MR16 LED replacing each of them. We installed a luminarie inside a thermally shielded chamber, measuring the temperature changes under the same volume every 5 minutes and compared the result with theoretically calculated heat radiation. The temperature changes in the chamber was measured four times, on seven hours' period in order to keep sufficient time once the temperature reaches the thermal equilibrium state. The results showed that the temperature of the 20 W E26 CFL and the 10 W LED downlight increased by $21.1^{\circ}C$ and $10.4^{\circ}C$ respectively, while that of the 50 W halogen MR16 and the 4 W LED MR16 increased by $33.9^{\circ}C$ and $4.8^{\circ}C$ respectively. The experimental heat radiation were calculated from the results and the experimental heat radiation of the CFL and the LED downlight were 171.5 cal and 86.5 cal, and those of the halogen MR16 and the LED MR16 were 275.3 cal and 36.5 cal. Therefore, the heat radiation was reduced by 49.5% and 86.7%, respectively, by replacing conventional light source with LED. In conclusion, we can expect a reduction of power consumption in air condition system and the effect on indoor temperature increase by application of LED luminaires.

Effects of Various Light Sources on the Carotenoid and Glucosinolate Contents in Chinese Cabbage (Brassica rapa L. ssp. pekinensis) (다양한 광원이 배추 내 Carotenoid와 Glucosinolate 함량에 미치는 영향)

  • Sung, Ho-Young;Jo, Lee-Kyeong;Chun, Jin-Hyuk;Woo, Hyun-Nyung;Kim, Sun-Ju
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.2
    • /
    • pp.79-86
    • /
    • 2018
  • BACKGROUND: Chinese cabbage biosynthesizes various phytochemicals including carotenoids and glucosinolates. Environmental stress has a major effect on the growth and yields of vegetables, and can significantly affect nutritionally important phytochemicals. Phytochemicals of plants are influenced by light, temperature, carbon dioxide, and growing conditions. The aim of this study was to investigate the effect of various light sources on carotenoid and glucosinolate contents in Chinese cabbage. METHODS AND RESULTS: [Experiment I] Set the control (field control, FC) on the ground. Using acrylic sunlight, experiments were set up transparency box (field transparency, FT), red box (field red, FR) and blue box (field blue, FB). [Experiment II] Set the control (chamber control, CC) in the greenhouse. Using plant growth chamber with artificial light, experiments were set up LED red (chamber red, CR), LED blue (chamber blue, CB), LED mixed red+blue (chamber red+blue, CRB) and fluorescent (chamber fluorescent, CF). After plant growth, Chinese cabbage was harvested at 110 days after sowing (DAS). The status of plants growth (leaf length, width, fresh weight etc.) was immediately investigated. Carotenoid and GSL contents were analyzed by HPLC. [Experiment I] Results documented that the ranges of total carotenoid contents were 25.39 ~ 58.80 mg/kg dry wt for lutein, 0.84~ 4.22 mg/kg dry wt for zeaxanthin, and 3.85~18.71 mg/kg dry wt for ${\beta}$-carotene. Lutein was the highest for the content and the largest for the variation as well. [Experiment II] Results documented that the ranges of total carotenoid contents were 24.66~137.96 for lutein, 2.51~20.65 for zeaxanthin, and 8.40~49.80 mg/kg dry wt for ${\beta}$-carotene. The total carotenoid contents of CR (156.62) and CB (115.90) were 1.6~2.3 times larger than the other treatments, and ${\beta}$-carotene content was about twice as high as that of the other treatments on the CR (38.74 mg/kg dry wt.). [Experiment I] Total GSL content was the highest in FT (19.76) that was higher 1.7 times than the lowest treatment ($11.39{\mu}mol/g\;dry\;wt$.). [Experiment II] The total content of GSL was highest in CRB (4.19) and lowest in CF ($2.88{\mu}mol/g\;dry\;wt$.). In the CRB, total GSL contents ($4.19{\mu}mol/g\;dry\;wt$.) was the highest. CONCLUSION: Total and individual carotenoid and GSL contents in Chinese cabbage show significant differences under different light sources. Red and blue lights contribute to significant carotenoids expression and antioxidant activity for nutrition and health benefits. These results concluded that the introduction of varying lights affected the synthesis of important nutrient compounds in Chinese cabbage. It is predicted that the application of good light source enhances the accumulation of functional compounds.

Study on ICT convergence in Lentinula edodes (Shiitake) cultivation system using Automated container (컨테이너형 수출용 버섯식물공장시스템설계 및 표고버섯 생산 연구)

  • Jo, Woo-Sik;Lee, Sung-Hak;Park, Woo-Ram;Shin, Seung-Ho;Park, Chang-Min;Oh, Ji-Hyun;Park, Who-Won
    • Journal of Mushroom
    • /
    • v.15 no.4
    • /
    • pp.264-268
    • /
    • 2017
  • In the 21st century, information and communication technology (ICT) worldwide presents a new vision for agriculture. Time and place, as well as the high-tech industry, to overcome barriers to the fusion of the so-called "smart agriculture," are changing the agricultural landscape. Core container production in precision agriculture for mushroom cultivation, optimal temperature, humidity, irradiation, self-regulation of factors such as carbon dioxide, and environment for mushroom cultivation were adopted. Lentinula edodes (shiitake) is an edible mushroom native to East Asia, cultivated and consumed in many Asian countries. It is considered to be medicinal in certain practices of traditional medicine. We used different controlled light sources (Blue-Red-White-combined LED, blue LED, red LED, and fluorescent light) with different LED radiation intensities (1.5, 10.5, and $20.5{\mu}mol/m^2s$ for LEDs) to compare growth and development. Mushrooms were treated with light in a 12-hour-on/12-hour-off cycle, and maintained in a controlled room at $19{\sim}21^{\circ}C$, with 80~90% humidity, and an atmospheric $CO_2$ concentration of 1,000 ppm for 30 days. Growth and development differed with the LED source color and LED radiation intensity. Growth and development were the highest at $10.5{\mu}mol/m^2s$ of blue LED light. After harvesting the fruit bodies, we measured their weight and length, thickness of pileus and stipe, chromaticity, and hardness. The $10.5{\mu}mol/m^2s$ blue-LED-irradiated group showed the best harvest results with an average individual weight of 39.82 g and length of 64.03 mm, pileus thickness of 30.85 mm and pileus length of 43.22 mm, and stipe thickness of 16.96 mm with fine chromaticity and hardness. These results showed that blue LED light at $10.5{\mu}mol/m^2s$ s exerted the best effect on the growth and development of L. edodes (shiitake) mushroom in the ICT-system container-type environment.

The Effects of the Light Quality of a Light Emitting Diode (LED) on the Phosphate Uptake of Prasinophytes Tetraselmis suecica and Tetraselmis tetrathele (담녹조강 Tetraselmis suecica와 Tetraselmis tetrathele의 인산염 흡수에 미치는 발광다이오드 파장의 영향)

  • Han, Kyong Ha;Oh, Seok Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.96-101
    • /
    • 2019
  • This study was conducted to investigate the effects of the light quality of a Light Emitting Diode (LED) on the phosphate uptake of Prasinophytes Tetraselmis suecica and Tetraselmis tetrathele. These species were exposed to a blue LED (max = 450 nm), a yellow LED (max = 590 nm), a red LED (max = 630 nm) and a fluorescent lamp (control) at $100{\mu}mol\;m^{-2}\;s^{-1}$. The maximum uptake rates (${\rho}_{max}$) of T. suecica and T. tetrathele under the red LED were $6.35pmol\;cell^{-1}\;hr^{-1}$ and $9.85pmol\;cell^{-1}\;hr^{-1}$, respectively. The half saturation constants (Ks) of two species were $9.43{\mu}M$ and $21.2{\mu}M$, respectively. The phosphate affinity of the two species under the red LED was higher than that of other wavelengths. Thus, the optimum light source to ensure economically effective and productive growth in a Tetraselmis culture system (Photo-Bioreactor) would be red LEDs because of the high growth rate shown, regardless of relatively low nutrient conditions.

Development and Evaluation of Children's Smart Photonic Safety Clothing ( 어린이의 스마트 포토닉 안전의복의 개발 및 평가)

  • Soon-Ja Park;Dae-jin, Ko;Sung-eun, Jang
    • Science of Emotion and Sensibility
    • /
    • v.26 no.2
    • /
    • pp.129-140
    • /
    • 2023
  • Following ISO 20471, in this study, first, two sets of safety clothes and safety vests were made by designing and attaching animal and bird patterns preferred by children to retroreflective films and black fabrics on those fluorescent fabrics and retroreflective materials prescribed by international standards. Second, by mounting a smart photonic device on the safety clothing so that the body can be recognized from a distance even without an ambient light source at night, children can emit three types of light depending on the situation with just one-touch of the button. From a result of comparison with visibility a day and night by dressing a mannequin in the made smart safety clothing, the difference in visibility was evident at night, it was confirmed that we can see the figure of a person even at a distance of approximately 70 m. Therefore, it is expected to contribute to the prevention of traffic and other accidents on the road, as the drivers driving at night or in bad weather can recognize a person from a distance. Third, in case of the energy is exhausted and cannot maintain the stability of the light-emitting function of the optical faber, we can use energy harvesting device, and the light-emitting time will be extended. As a result it comes up to emit light stably for a long time. And this prove that smart photonic safety clothing can also be used for night workers. Therefore, optical fiber safety clothing is expected to be highly wearable not only in real life but also in dark industrial sites due to stable charging by applying the energy harvesting provided by solar cells.

Effect of Air Temperature on Growth and Phytochemical Content of Beet and Ssamchoo (온도처리가 비트와 쌈추의 생육과 생리활성 물질 함량에 미치는 영향)

  • Lee, Sang Gyu;Choi, Chang Sun;Lee, Hee Ju;Jang, Yoon Ah;Lee, Jun Gu
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.303-308
    • /
    • 2015
  • The consumption of leaf vegetables has been steadily increasing in Korea. Leaf vegetables are used for "Ssam (vegetable wrap-up), eaf vegetables has been steadily increasing in Korea. Leaf vegetables are used for asoned condiments inside several layers of young vegetable leaves. This study investigated the effect of air temperature on the growth and phytochemical contents of beet (Beta vulgaris L.) and Ssamchoo (Brassica lee L. ssp. namai) grown in a closed-type plant factory system where fluorescent lamps were used as an artificial light source. Seeds of beet and Ssamchoo were sown in a peat-lite germination mix. The roots of 20-day-old seedlings were washed, and the seedlings were planted on a styrofoam board and grown in hydroponic beds for 25 days under fluorescent light. Plants were exposed to one of three different air temperature regimes (20, 25 and $30^{\circ}C$ during the day combined with $18^{\circ}C$ during the night), which were monitored with a sensor at 30 cm above the plant canopy. Increased plant height and leaf area were observed in beet at $25^{\circ}C$ and $30^{\circ}C$ compared to $20^{\circ}C$. For Ssamchoo, the greatest plant height, leaf area, fresh weight and dry weight were obtained at $20^{\circ}C$. Ascorbic acid content of beet and Ssamchoo leaves were highest at $30^{\circ}C$. In beet, total polyphenol and flavonoid contents were higher at $20^{\circ}C$ (42.4, $197.0mg{\cdot}g^{-1}DW$) and $25^{\circ}C$ (46.9, $217.0mg{\cdot}g^{-1}DW$) than $30^{\circ}C$ (22.4, $88.0mg{\cdot}g^{-1}DW$). In Ssamchoo, total polyphenol and flavonoid contents were also higher at $20^{\circ}C$ (79.2, $268.2mg{\cdot}g^{-1}DW$) and $25^{\circ}C$ (66.3, $258.3mg{\cdot}g^{-1}DW$), respectively, than $30^{\circ}C$ (53.7, $134.7mg{\cdot}g^{-1}DW$). Hence, the optimum temperature appears to be $20^{\circ}C$ for growing both beet and Ssamchoo in a closed-type plant factory system with fluorescent light.

Color Reproduction in Television Receiver Based on Chromatic Adaptation of Human Visual System (시각계 색 순응을 고려한 텔레비전 수상기에서의 색 재현)

  • Choi, Duk-Kyu;Han, Chan-Ho;Lee, Kuhn-Il;Sohng, Kyu-Ik
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.133-143
    • /
    • 1998
  • The viewers primarily watch a television under the surround light source of an incandescent or a fluorescent light. When human visual system has been adapted chromtically under the different surround light, the same chromaticities elicit quite different color appearnaces. Therefore, the corresponding color reproduction is the most suitable objective of a color television system. In this paper, an efficient corresponding color reproduction method based on the chromatic adaptation of human visual system is proposed in which colors in the display have the same appearance as the colors in the original would have had if they had been illuminated by standard illuminant ($D_{65}$). The chromaticities that appeared neutral in human visual system were determined by the Hunt's experimental results of the color adaptation in picture viewing situations and the corresponding chromaticity coordinates of stimuli in chromatic adaptation were obtained by the Bartleson's theory. Also, the corresponding color reproduction is realized by changing the phase and the gain of the demodulation axes in television receiver. Experimental results show that the proposed corresponding color displayed on the television is better than that of the conventional colorimetric color reproduction under the surround light sources.

  • PDF

Inactivation of Candida albicans Biofilm by Radachlorin-Mediated Photodynamic Therapy (라다클로린으로 매개된 광역학치료에 의한 백색 캔디다 바이오필름의 비활성)

  • Kwon, Pil Seung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.273-278
    • /
    • 2015
  • The purpose of this study was to evaluate the in-vitro efficacy of PDT using red light emitting diode (LED) with Radachlorin for biofilm inhibition of clinical Candida albicans isolates. The suspensions containing C. albicans at $9{\times}10^8CFU/mL$ were prepared on yeast nitrogen base containing 5% glucose. The biofilm formation was grown for 3 h after seeding suspensions each 100 ul on a 96-well plate and then supernatant was discarded. Each well was treated with $0.39{\mu}g/mL$ from $50{\mu}g/mL$ concentrations of Radachlorin on adherent biofilm. After a 30-minute incubation, light was irradiated for 30, 60, or 90 minutes using the following light source of wavelength 630 nm LED, at energy densities of 14, 29, and $43J/cm^2$. Afterwards, all supernatant was removed and dried. Adherent cells were stained with safranin O and dried. The cell viability was measured using a microplate reader at 490 nm. Also, a fluorescent signal on C. albicans was observed by saturation of a photosensitizer. In conclusion, a significant inhibition of 72.5% was observed to C. albicans on biofilm at the Radachlorin dose of $50{\mu}g/mL$ with 630 nm LED. The Photosensitizer (Radachlorin) was adequate at 30 minuttes for C. albicans. Overall, the results showed that inhibition of biofilm formation was Radachlorine dose-dependent. The results suggest that PDT, using Radachlorin with 630 nm LED, is able to decrease biofilm formation of C. albicans.

Quantitative Changes of Cholesterol Oxides Formed in Butter under Varied Storage Conditions (상이한 조건에서 저장한 버터로부터 생성된 콜레스테롤 산화물의 양적변화)

  • Chang, Young-Sang;Yang, Joo-Hong;Shin, Hyo-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.7
    • /
    • pp.767-773
    • /
    • 1990
  • The effect of storage conditions on the oxidative stability of cholesterol in butter was studied by quantifying cholesterol oxides by GC-MS. Experimental variables for storage conditions were packaging, storage temperature, light source, and storage period. No cholesterol oxides were detected from packaged butter under all storage conditions. When unpackaged butter was stored under ultraviolet light at ambient temperature, $7{\alpha}-hydroxycholesterol,\;7{\beta}-hydroxycholesterol$, cholesterol ${\beta}-epoxide$, cholesterol ${\alpha}-epoxide$, cholestane-triol were detected after 2, 4, 6 and 8 weeks of storage. The amounts of cholesterol oxide species produced were different depending on the storage periods. The amounts of each cholesterol oxides, $7{\alpha}-hydroxycholesterol,\;7{\beta}-hydroxycholesterol$, cholesterol ${\beta}-epoxide$, cholesterol ${\alpha}-epoxide$, and cholestane-triol, produced after 2 weeks of storage were 34.2, 14.0, 12.1, 1.30, and 0.50 ppm, respectively, and after 8 weeks of storage were 68.1, 29.1, 56,3, 8.50, and 4.00 ppm, respectively with trace amounts of 3,5-cholestadien-7-one. When fluorescent light was used instead of ultraviolet light with other conditions remained the same, the same species of cholesterol oxides were detected but with lesser amounts.

  • PDF

Applicability of Artificial Light Source and Newly Developed Growing Medium for Lettuce Cultivation in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 상추재배를 위한 인공광원과 신개발 배지의 적용)

  • Lee, Hye Ri;Kim, Hye Min;Kim, Hyeon Min;Park, Sang Hyun;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.134-142
    • /
    • 2019
  • This study was conducted to evaluate the growth characteristics of lettuce (Lactuca sativa L.) as affected by artificial light sources and different growing media in a closed-type plant production system (CPPS). The lettuce seeds were sown in the 128-cell plug tray filled with 5 different growing media such as urethane sponge (US), rock-wool (RW), Q-plug (QP), TP-S2 (TP) and PU-7B (PU). The germination rate of lettuce seeds was examined during 12 days after sowing. On the 13 days after sowing, the lettuce seedlings were transplanted in a CPPS with temperature $25{\pm}1^{\circ}C$ and nutrient solution (EC $2.0dS{\cdot}m^{-1}$, pH 6.5) using recirculating deep floating technique system. The light sources were set with FL (fluorescent lamps) and combined RB LEDs (red : blue = 7 : 3) with $150{\pm}10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and a photoperiod of 14/10 hours (light/dark). The initial germination rate of lettuce was the highest in TP. The final germination and mean daily germination were the significantly highest in RW, QP and TP. The plant height, leaf length, leaf width, leaf area, and fresh and dry weights of shoot were the greatest in QP irradiated with RB LED. The number of leaves, fresh and dry weights of root and SPAD were the greatest in QP and TP irradiated with RB LED. The root length was the longest in TP irradiated with RB LED. Therefore, these results indicate that RB LED was effective for the growth of lettuce and it was also found that the QP and TP were effective for the germination and growth of lettuce in a CPPS. In addition, we confirmed the applicability of the newly developed growing medium TP for the lettuce production in a CPPS.