• Title/Summary/Keyword: Fluorescence stability

Search Result 153, Processing Time 0.033 seconds

Effects of Lipid Composition on the Properties of Phospholipid Liposomal Membranes (리포솜 지질막의 성질에 미치는 지질 조성의 영향)

  • Kim, Min;Han, Suk-Kyu;Kim, Chong-Kook
    • YAKHAK HOEJI
    • /
    • v.38 no.2
    • /
    • pp.131-139
    • /
    • 1994
  • Calcein-encapsulated small unilamellar vesicles of various lipid composition were prepared using the sonication technique, and their stabilities at $20^{\circ}C$ were examined by measuring calcein leakage from the liposomes. The fluidity of these liposomal bilayers was also investigated by measuring the fluorescence polarization of DPH labelled into the liposomes. The results showed that liposomes made of PC mixtures with different acyl chain length were very stable, which may be due to the formation of interdigitated bilayer structure. The addition of cholesterol further stabilized these PC liposomes. However, addition of cholesterol reduced the encapsulation efficiences of liposomes. The fluidity of the liposomes was significantly decreased by cholesterol in the liquid crystalline state, but not changed in the gel state. These results suggest that the enhanced stability of PC mixture liposomes may be ascribed to the formation of stable interdigitated bilayer structure. In membrane-mimetic and drug-delivery studies, vesicles made of mixtures of various phospholipids are recommended instead of addition of cholesterol to the phospholipid.

  • PDF

Synthesis and Characterization of Highly Fluorescent and Thermally Stable π-Conjugates involving Spiro[fluorene-9,4'-[4H]indeno[1,2-b]furan]

  • Kowada, Toshiyuki;Ohe, Kouichi
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.577-581
    • /
    • 2010
  • Spiro[fluorene-9,4'-[4H]indeno[1,2-b]furan] was synthesized, and its $\pi$-conjugation was efficiently elongated using palladium-catalyzed C-H arylation of a furan moiety. The resulting $\pi$-conjugated compounds showed intense fluorescence and extremely high thermal stability.

Effect of Trehalose on Biological Membranes with Respect to Phase of the Membranes

  • Park, Jin-Won
    • KSBB Journal
    • /
    • v.32 no.2
    • /
    • pp.103-107
    • /
    • 2017
  • The effect of the trehalose incorporation on the biological membranes was investigated with respect to the phase of the membranes using the fluorescence intensity change. Spherical phospholipid bilayers, vesicles, were prepared only with the variation in the phase of each layer via a double emulsion technique. In the aqueous inside of the vesicles, 8-Aminonaphthalene-1,3,6-trisulfonic acid disodium salt(ANTS) was encapsulated. As a quencher, p-Xylene-bis(N-pyridinium bromide)(DPX) was included in the buffer where the vesicles were dispersed. The fluorescence scale was calibrated with the fluorescence of ANTS vesicles in p-Xylene-bis(N-pyridinium bromide)(DPX)-included-buffer taken as 100% fluorescence and the mixture of ANTS and DPX in the buffer as 0% fluorescence. Trehalose injection into the vesicle solution led the distortion of the membrane. It was found that the distortion was related to the phase of each layer the vesicle up on the ratio of trehalose to lipid. In the identical measurements at glucose, the behavior of the distortion was completely different from that of trehalose. These results seem to depend on the stability of the vesicles, due to the osmotic and volumetric effects on the headgroup packing disruption.

Fluorescence Immunoassy of HDL and LDL Using Protein A LB Film

  • Choi, Jeong-Woo;Park, Jun-Hyo;Lee, Woo-Chang;Oh, Byung-Keun;Min, Jun-Hong;Lee, Won-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.979-985
    • /
    • 2001
  • A fluorometric detection technique for HDL (High Density Lipoprotein) and LDL (Low Density Lipoprotein) was developed for application in a fiber-optic immunosensor using a protein A Langmuir-Blodgget (LB) film. For the fluorescence immunoassay, antibodies specific to HDL or LDL were imobilied on the protein A LB film, and a fluorescence amplification method was developed to overcome their weak fluorescence. The deposition of protein A using the LB technique was monitored using a surface pressure-are $({\pi}-A)$ curve, and the antibody immobilization of the protein A LB film was experimentally verified. The immobilized antibody was used to separate only HDL and LDL from a sample, then the fluorescence of he separated HDL or LDL was amplified. The amount of LDL or HDL was measured using the developed fiber optic fluorescence detection system. The optical properties resulting from the reaction of HDL or LDL with o-phtaldialdehyde, detection range, response time, and stability of the immunoassay were all investigated. The respective detection ranges for HDL and LDL were sufficient to diagnose the risk of coronary heart disease. The amplification step increased the sensitivity, while selective separation using the immobilized antibody led to linearity in the sensor signal. The regeneration of the antibody-immobilized substrate could produce a stable and reproducible immunosensor.

  • PDF

Antioxidative Effects and Characteristics of Methanol Extracts from Perilla Oils Roasted for Different Time (볶음시간에 따른 들기름 메탄올 추출물의 항산화 효과와 특성)

  • Shin, Kyoung-Ah;Ko, Young-Su;Lee, Young-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1045-1050
    • /
    • 1998
  • This study was carried out to investigate the oxidative stability of oils from peril1a seeds roasted at $190^{\circ}C$ for $0{\sim}50$ min. The oxidative stability of perilla oils increased as the roasting time increased. Oxidative stability of perilla oils extracted methanol extracts significantly decreased. When 1.0%(w/w) methanol and hexane fractions prepared from methanol extracts added to the unroasted perilla oils, methanol fractions showed strong antioxidative effects, but hexane fractions showed weak effects. As the roasting time increased, the browning intensity, fluorescence and electron donating ability of methanol extracts, methanol and hexane fractions increased, and those were closely related with antioxidative effects.

  • PDF

Changes in oxidative stability of the oil extracted from perilla seed roasted at different roasting conditions (들깨의 볶음 조건에 따른 들기름의 산화 안정성 변화)

  • Kim, In-Hwan;Lee, Young-Chul;Jung, Sook-Young;Jo, Jae-Sun;Kim, Young-Eon
    • Applied Biological Chemistry
    • /
    • v.39 no.5
    • /
    • pp.374-378
    • /
    • 1996
  • The oxidative stabilities of perilla oil increased as roasting temperature and time increased. Induction period of the perilla oil from unroasted perilla seed was 3.9 days, but that of the oil from perilla seed roasted at $210^{\circ}C$ for 30 min was 55 days. The electron donating ability(EDA) on DPPH by perilla oils increased as the roasting temperature and time increased. EDA of the unroasted perilla oil was 24% but that of the perilla oil roasted at $210^{\circ}C$ for 30 min was 64%. These results indicated that the reducing compounds were formed during the roasting process. The fluorescence intensity in perilla oil increased as the roasting temperature and time were increased. This result indicated that Maillard reaction has occurred during the roasting process and the reaction products seemed to provide stability to perilla oil.

  • PDF

Effect of degumming conditions on the fluorescence intensity of fluorescent silk cocoons: A combined experimental and molecular dynamics study

  • Chan Yeong, Yu;Ezekiel Edward, Nettey-Oppong;Elijah, Effah;Su Min, Han;Seong-Wan, Kim;Seung Ho, Choi
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.45 no.2
    • /
    • pp.56-69
    • /
    • 2022
  • Silk is a unique natural biopolymer with outstanding biocompatibility, high mechanical strength, and superior optical transparency. Due to its excellent properties, silk has been widely reported as an ideal biomaterial for several biomedical applications. Recently, fluorescent silk protein, a variant of native silk, has been reported as a biophotonic material with the potential for bioimaging and biosensing. Despite the realization of fluorescent silk, the traditional degumming process of fluorescence silk is crude and often results in fluorescence loss. The loss of fluorescent properties is attributed to the sensitivity of silk fibroin to temperature and solvent concentration during degumming. However, there is no comprehensive information on the influence of these processing parameters on fluorescence evolution and decay during fluorescent silk processing. Therefore, we conducted a spectroscopic study on fluorescence decay as a function of temperature, concentration, and duration for fluorescent silk cocoon degumming. Sodium carbonate solution was tested for degumming the fluorescent silk cocoons with different concentrations and temperatures; also, sodium carbonate solution is combined with Alcalase enzyme and triton x-100 to find optimal degumming conditions. Additionally, we conducted a molecular dynamics study to investigate the fundamental effect of temperature on the stability of the fluorescent protein. We observed degumming temperature as the prime source of fluorescent intensity reduction. From the MD study, fluorescence degradation originated from the thermal agitation of fluorescent protein Cα atoms and fluctuations of amino acid residues located in the chromophore region. Overall, degumming fluorescent silk with sodium carbonate and Alcalase enzyme solution at 25 ℃ preserved fluorescence.

A New-Generation Fluorescent-Based Metal Sensor - iLOV Protein

  • Ravikumar, Yuvaraj;Nadarajan, Saravanan Prabhu;Lee, Chong-Soon;Rhee, Jin-Kyu;Yun, Hyungdon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.503-510
    • /
    • 2015
  • The iLOV protein belongs to a family of blue-light photoreceptor proteins containing a light-oxygen-voltage sensing domain with a noncovalently bound flavin mononucleotide (FMN) as its chromophore. Owing to advantages such as its small size, oxygen-independent nature, and pH stability, iLOV is an ideal candidate over other reporter fluorescent proteins such as GFP and DsRed. Here, for the first time, we describe the feasibility of applying LOV domain-based fluorescent iLOV as a metal sensor by measuring the fluorescence quenching of a protein with respect to the concentration of metal ions. In the present study, we demonstrated the inherent copper sensing property of the iLOV protein and identified the possible amino acids responsible for metal binding. The fluorescence quenching upon exposure to Cu2+ was highly sensitive and exhibited reversibility upon the addition of the metal chelator EDTA. The copper binding constant was found to be 4.72 ± 0.84 µM. In addition, Cu2+-bound iLOV showed high fluorescence quenching at near physiological pH. Further computational analysis yielded a better insight into understanding the possible amino acids responsible for Cu2+ binding with the iLOV protein.

Stability Enhancement by the Interaction of Diffusion Flames (다수 비예혼합 화염의 안정화 특성)

  • Kim, Jin-Sun;Lee, Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1420-1426
    • /
    • 2003
  • The stability of turbulent nonpremixed interacting flames is investigated in terms of nozzle configuration shapes and kind of fuels. Four nozzle arrangements - cross 5, matrix 8, matrix 9 and circle 8 nozzles - are used in the experiment. There are many parameters affecting flame stability in multi-nozzle flames such as nozzle separation distance, fuel flowrates and nozzle configuration etc. Key factors to enhance blowout limit are the nozzle configuration and the existence of center nozzle. Even nozzle exit velocity equal 204 m/s, flame is not extinguished when there is not a center nozzle and s/d=15.3∼27.6 in matrix-8 and circular-8 configurations. At these conditions, recirculation of burnt gas is related with stability augmentation. Fuel mole fraction measurements using laser induced fluorescence reveal lifted flame base is not located at the stoichiometric contour.