• Title/Summary/Keyword: Fluorescence quenching

Search Result 239, Processing Time 0.031 seconds

A Carbazole-Attached NO2S2-Macrocycle Exhibiting Hg2+ and Cu2+ Selectivity

  • Lee, Seul-Gi;Kang, Eun-Ju;Lee, Shim Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1429-1434
    • /
    • 2013
  • A synthesis and cation-induced fluorescent behavior of the carbazole-attached $NO_2S_2$-macrocycle (L) is described and structurally characterized by single crystal X-ray analysis. The photoluminescence spectrum of L in 80% $CH_3CN/CH_2Cl_2$ displays a peak maximum at 431 nm (blue emission). In the metal-induced fluorometric experiment, L showed a drastic chelation-enhanced fluorescence quenching (CHEQ) effect only with $Hg^{2+}$ and $Cu^{2+}$. In ESI-mass study, a 1:1 stoichiometry for complexation of L with $Hg^{2+}$ was confirmed, suggesting the unique sensing behavior of the proposed ligand L due to the selective complexation affinity for $Hg^{2+}$. The observed results indicate that L is a promising turn-off type fluoroionophore for $Hg^{2+}$ and $Cu^{2+}$ detections. Additionally, the $Ag^+$ complex of the precursor macrocycle was prepared and its solid structure was crystallographically characterized.

An investigation of the nuclear shielding effectiveness of some transparent glasses manufactured from natural quartz doped lead cations

  • Kassem, Said M.;Ahmed, G.S.M.;Rashad, A.M.;Salem, S.M.;Ebraheem, S.;Mostafa, A.G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2025-2037
    • /
    • 2021
  • The influence of lead cations on natural quartz (QZ) from Egypt as a glass shielding material for the composition with nominal formula (10Na2O - (90 - x) QZ - xPbO (where x = 30, 35, 40, 45 and 50 mol %)) was examined. The studied samples are synthesized via the melt quenching method at 1050 ℃. The X-ray diffraction XRD patterns were confirmed the glass nature for studied samples. Moreover, the optical properties, and the transparency for all compositions were examined by UV-Vis spectroscopy. Also, the major elemental composition of the natural quartz were estimated via the X-ray fluorescence (XRF) technique. Further, the density and molar volume were determined. Furthermore, the nuclear shielding parameters such as, mass attenuation coefficient, effective atomic number, electronic density, the total atomic, and electronic cross sections as well as the mean free path, and the half value layer with different gamma ray energies (81 keV-1407 keV) were calculated. Besides, the results showed that the shielding behavior towards the gamma ray radiation for all glass samples was increased as the increment in PbO concentration in the glass system.

Effects of heavy metals and albumin on lysozyme activity

  • Ko, Eun;Ku, Seul-I;Kim, Dae-yoon;Shin, Sooim;Choi, Moonsung
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.367-370
    • /
    • 2018
  • Lysozyme is an antibacterial enzyme that is found in most of body fluids. Lysozyme in tears plays a primary role in protecting eye from harmful environments; if lysozyme is degraded or inhibited, eyes are likely to be more vulnerable to bacterial infection. In this study, lysozyme activity was evaluated according to varying concentrations of heavy metals, copper, zinc, cobalt and manganese and light metal, calcium that are frequently found in airborne particulate matters and was assayed using a dye-quenching lysozyme substrate, Micrococcus lysodeikticus. Less fluorescence intensity was observed with increasing amounts of copper, zinc, manganese and cobalt but not with calcium suggesting that these metals have some affinity with lysozyme and inhibit lysozyme activity. When albumin, the second most common protein in tears, was added on the reaction of lysozyme and metals, lysozyme activity was partially restored. This finding suggests that the albumin might protect damage caused by metals on lysozyme. To identify whether the decrease in enzymatic activity was related to structural changes of lysozyme, SDS-PAGE was conducted and only with copper did lysozyme show marked smearing bands on the SDS-gel, meaning that copper degraded lysozyme consistent with the sharpest activity decrease.

Isovitexin Protects Mice from Methicillin-Resistant Staphylococcus aureus-Induced Pneumonia by Targeting Sortase A

  • Tian, Lili;Wu, Xinliang;Yu, Hangqian;Yang, Fengying;Sun, Jian;Zhou, Tiezhong;Jiang, Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1284-1291
    • /
    • 2022
  • The rise of methicillin-resistant Staphylococcus aureus (MRSA) has resulted in significant morbidity and mortality, and clinical treatment of MRSA infections has become extremely difficult. Sortase A (SrtA), a virulence determinant that anchors numerous virulence-related proteins to the cell wall, is a prime druggable target against S. aureus infection due to its crucial role in the pathogenicity of S. aureus. Here, we demonstrate that isovitexin, an active ingredient derived from a variety of traditional Chinese medicines, can reversibly inhibit SrtA activity in vitrowith a low dose (IC50=24.72 ㎍/ml). Fluorescence quenching and molecular simulations proved the interaction between isovitexin and SrtA. Subsequent point mutation experiments further confirmed that the critical amino acid positions for SrtA binding to isovitexin were Ala-92, Ile-182, and Trp-197. In addition, isovitexin treatment dramatically reduced S. aureus invasion of A549 cells. This study shows that treatment with isovitexin could alleviate pathological injury and prolong the life span of mice in an S. aureus pneumonia model. According to our research, isovitexin represents a promising lead molecule for the creation of anti-S. aureus medicines or adjuncts.

Changes in the Characteristics of Dissolved Organic Matter by Microbial Transformation and the Subsequent Effects on Copper Binding (생분해에 따른 용존 유기물질 성상 및 중금속 구리와의 결합특성 변화)

  • Jung, Ka-Young;Hur, Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.49-54
    • /
    • 2012
  • Microbial changes in the characteristics of dissolved organic matter (DOM) and the subsequent effects on the conditional stability constants of copper were investigated using 14 day-incubations of Pony Lake fulvic acid (PLFA), Suwannee River fulvic acid (SRFA) and the mixtures of the humic substances and glucose. After incubation, dissolved organic carbon (DOC) concentrations were diminished, and specific UV absorbance values and DOC-normalized fluorescence intensities increased. The microbial changes were minimal for the samples contaning humic substances only whereas they were much pronounced for the mixtures with glucose. The extent of the changes increased with a higher content of glucose in the mixtures. The same trend was observed even for glucose solution. Our results suggest that labile organic moieties may be transformed into more chromophoric and humidified components by biodegradation. For the mixture samples, the copper binding stability constants did not change or even decreased after incubation. Therefore, microbially induced enrichment of the fulvic- and humic-like carbon structures in DOM appears to result in little change or the decrease of the copper binding coefficients.

Effect of a Serial Irradiation of Low Dose Gamma Rays on the Growth and Photosynthesis of Red Pepper (Capsicum annuum L.) Plants

  • Kim, Jin-Hong;Chung, Byung Yeoup;Wi, Seung Gon;Baek, Myung-Hwa;Lee, Myung Chul;Kim, Jae-Sung
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.4
    • /
    • pp.537-542
    • /
    • 2004
  • To reveal the relationship between the changes in the growth and photo- synthesis induced by low dose radiation, red pepper (Capsicum annuum L.) plants were serially irradiated three times with gamma rays of 0.5, 1, 2, 3, and 4 Gy. The plant growth was monitored by the fresh weight, the stem length, and the leaf length & width. All the irradiation groups (0.5-4 Gy) were stimulated in growth at 1 day after the $1^{st}$ irradiation (DA1I), but rather inhibited at 3 days after the $3^{rd}$ irradiation (DA3I). The maximum photochemical efficiency (Fv/Fm), the photochemical quenching (qP), the non-:photochemical quenching (NPQ) and the apparent rate of the photosynthetic electron transport (ETR) were used to represent the changes in the photosynthesis by the serial irradiation. The irradiation groups except 0.5 Gy had higher Fv/Fm values at 3 DA3I than the control one. After the 3$^{rd}$ irradiation, the qP values appeared to be a little lower in the 1-4 Gy groups than in the control and 0.5 Gy ones. In contrast, the NPQ values were rather higher in the irradiation groups except 0.5 Gy. During the whole experimental period, the ETRs decreased in the control group but remained relatively constant in the 4-Gy one. In conclusion, the results obtained indicate that the stimulatory effect of ionizing radiation on the plant growth was determined by the incident dose of the single irradiation rather than by the cumulative one of the serial irradiation. They also demonstrate that the growth stimulation induced by a low dose radiation could not be positively correlated with an alteration in the photosynthesis. Additionally, we discuss in text that an ionizing radiation may partly protect the leaf senescence by delaying the development of the plants.

Silica-encapsulated ZnSe Quantum Dots as a Temperature Sensor Media (온도센서용 실리카에 담지된 ZnSe 양자점 소재)

  • Lee, Ae Ri;Park, Sang Joon
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.362-365
    • /
    • 2015
  • Silica encapsulated ZnSe quantum dots (QDs) were prepared by employing two microemulsion systems: AOT/water/cyclohexane microemulsions containing ZnSe quantum dots with NP5/water/cyclohexane microemulsions containing tetraethylorthosilicate (TEOS). Using this method, cubic zinc blende nanoparticles (3 nm in diameter) were synthesized and encapsulated by silica nanoparticles (20 nm in diameter). The temperature dependence of photoluminescence (PL) for silica-encapsulated ZnSe QDs was investigated to evaluate this material as a temperature sensor media. The fluorescence emission intensity of silica-encapsulated ZnSe nanoparticles (NPs) was decreased with an increase of ambient temperature over the range from $30^{\circ}C$ to $60^{\circ}C$ and a linear relationship between the temperature and the emission intensity was observed. In addition, the temperature dependence of PL intensity for silica-encapsulated ZnSe NPs showed a reversible pattern on ambient temperature. A reversible temperature dependence of the luminescence combined with its insensitivity toward quenching by oxygen due to silica coating established this material as an attractive media for temperature sensor applications.

Synthesis and Characterization of Red Organic Fluorescent of Perylene Bisimide Derivatives (Perylene Bisimide 유도체의 적색 유기 형광체 합성 및 특성 연구)

  • Lee, Seung Min;Jeong, Yeon Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.577-582
    • /
    • 2017
  • The white light of a hybrid LED is obtained by using red and green organic fluorescent layers made of polymethylmethacrylate (PMMA) films, which function as color down-conversion layers of blue light-emitting diodes. In this research, we studied the fluorescence properties of a red organic fluorophore, employing perylene bisimide derivatives applicable to hybrid LEDs. The solubility, thermal stability, and luminous efficiency are important characteristics of organic fluorophores for use in hybrid LEDs. The perylene fluorescent compounds (1A and 1B) were prepared by the reaction of 4-bromophenol and 4-iodophenol with N,N'-bis(4-bromo-2,6-diisopropylphenyl)-1, 6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxyl diimide (1) in the presence of dimethyl formaldehyde (DMF) at $70^{\circ}C$. The synthesized derivatives were characterized by using $^1H-NMR$, FT-IR, UV/Vis absorption and PL spectra, and TGA analysis. Compounds 1A and 1B showed absorption and emission at 570 nm and 604 nm in the UV/Vis spectrum. We also documented favorable solubility and thermal stability characteristics of the perylene fluorophores in our work. Perylene fluorophore 1, with the 4-bromophenol substituent 1A, exhibited particularly good thermal stability and solubility in organic solvents.

Selective Fluidization of Synaptosomal Plasma Membrane Vesicles by 17β-Estradiol

  • Lee, Sae A;Park, Yong Jin;Jang, Il Ho;Kang, Jung Sook
    • Biomedical Science Letters
    • /
    • v.23 no.1
    • /
    • pp.17-24
    • /
    • 2017
  • Estrogens are effective neuroprotectants in vivo and in vitro. To obtain a better insight into the molecular mechanisms of action of neuroprotection by $17{\beta}-estradiol$ (E2), we examined the differential effects of E2 on the fluidity of synaptosomal plasma membrane vesicles (SPMV) isolated from rat cerebral cortex. Intramolecular excimerization of 1,3-di(1-pyrenyl)-propane (Py-3-Py) was used to investigate the effects of E2 on the bulk and annular lateral diffusion of the SPMV. In addition, we examined the effects of E2 on the rotational diffusion of individual leaflet of SPMV exploiting selective quenching of outer monolayer 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence by trinitrophenyl groups. The $F{\ddot{o}}rster$ distance $R_0$ value for the tryptophan-Py-3-Py donor-acceptor pair was $26.9{\AA}$. E2 increased the lateral mobility of both bulk and annular lipids in SPMV in a dose-dependent manner, but a larger effect on bulk lipids was observed. Although E2 decreased the anisotropy of DPH in SPMV, E2 had a greater fluidizing effect on the outer leaflet compared to the inner leaflet. These results suggest that E2 selectively fluidizes the more fluid regions within SPMV. It is highly probable that E2 mostly fluidizes the bulk lipids, away from either annular lipids or lipid rafts, in the outer leaflet of SPMV. This selective fluidization may be one of the nongenomic mechanisms of neuroprotection by E2.

Comparison in Structural Characteristics and Phenanthrene Sorption of Molecular Size-Fractionated Humic Acids (분자량 크기별 토양 휴믹산(HA)의 구조적 특성 및 페난트렌 흡착 반응특성 비교)

  • Lee, Doo-Hee;Kim, So-Hui;Shin, Hyun-Sang
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.70-79
    • /
    • 2015
  • A sample of soil humic acid (HA) was divided by ultrafiltration (UF) into five fractions of different molecular size (UF1: > 300, UF2: 100~300, UF3: 30~100, UF4: 10~30, UF5: 1~10 kilodaltons). Apparent average molecular weight (Mw) of the HA fractions were measured using high performance size exclusion chromatography (HPSEC), and the chemical and structural properties of the five HA fractions were characterized by elemental compositions (H/C, O/C and w ((2O + 3NH)/ C)) and ultraviolet-visible absorption ratios (SUVA, A4/6). The organic carbon normalized-sorption coefficients (Koc) for the binding of phenanthrene to the HA fractions were determined by fluorescence quenching and relationship between the sorption coefficients and structural characteristics of the HA fractions were investigated. The elemental analysis and UV-vis spectral data indicated that the HA fractions with higher molecular weights have grater aliphatic character and lower contents of oxygen, while the HA fractions with lower molecular size have greater aromatic character and molecular polarity that correspond to greater SUVA and internal oxidation values (w). The log Koc values (L/kg C) were gradual increased from 4.45 for UF5 to 4.87 for UF1. The correlation study between the structural descriptors of the HA fractions and log Koc values of phenanthrene show that the magnitude of Koc values positively correlated with $M_w$ and H/C, while negatively correlated with the independent descriptors of the O/C, w, SUVA and A4/6.