• Title/Summary/Keyword: Fluorescence quenching

Search Result 239, Processing Time 0.024 seconds

The Distribution of Barbiturates in Model Membranes of Total Lipids and Total Phospholipids Extracted from Brain Membranes

  • Park, Chang-Sik;Lee, Seong-Moon;Chung, In-Kyo;Kim, Jin-Bom;Son, Woo-Sung;Jang, Hye-Ock;Yun, Il
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.221-227
    • /
    • 2000
  • The distribution of barbiturates in the model membranes of total lipids (SPMVTL) and total phospholipids (SPMVPL) extracted from synaptosomal plasma membrane vesicles was determined by employing a fluorescent probe technique. The two fluorescent probes 2-(9-anthroyl)stearic acid and 12-(9-anthroyl)stearic acid were utilized as probes for the surface and the hydrocarbon interior of the outer monolayer of the SPMVTL and SPMVPL, respectively. The Stern-Volmer equation of fluorescent quenching was modified to calculate the relative distribution. The analysis of preferential quenching of these probes by barbiturates indicates that pentobarbital, hexobarbital, amobarbital and phenobarbital are predominantly distributed on the surface area, while thiopental sodium has an accessibility to the hydrocarbon interior of the outer monolayer of the SPMVTL and SPMVPL. From these results, it is strongly suggested that the more effective penetration into the hydrocarbon interior of the outer monolayer of the membrane lipid bilayer could result in a higher general anesthetic activity.

  • PDF

Study of Interaction of Native DNA with Iron(III)-(2,4-Dihydroxysalophen)chloride (천연 DNA와 2,4-디히드록시살로펜-염화철(III)과 의 상호작용 연구)

  • Azani, Mohammad-Reza;Hassanpour, Azin;Bordbar, Abdol-Khalegh
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.573-578
    • /
    • 2010
  • In this study, iron(III)-2,4-dihydroxysalophen chloride (Fe(2,4-DHSalophen)Cl), has been synthesized by combination of 2,4-dihydroxysalophen (2,4-DHSalophen) with $FeCl_2$ in a solvent system. This complex combination was characterized using UV-vis and IR spectroscopies. Subsequently, the interaction between native calf thymus deoxyribonucleic acid (ct-DNA) and Fe(2,4-DHSalophen)Cl, was investigated in 10 mM Tris/HCl buffer solution, pH 7.2, using UV-visible absorption and fluorescence spectroscopies, thermal denaturation technique and viscosity measurements. From spectrophotometric titration experiments, the binding constant of Fe(2,4-DHSalophen)Cl with ct-DNA was found to be $(1.6{\pm}0.2){\times}10^3\;M^{-1}$. The fluorescence study represents the quenching effect of Fe(2,4-DHSalophen)Cl on bound ethidium bromide to DNA. The quenching process obeys linear Stern-Volmer equation in extended range of Fe(2,4-DHSalophen)Cl concentration. Thermal denaturation experiments represent the increasing melting temperature of DNA (about $4.3^{\circ}C$) due to binding of Fe(2,4-DHSalophen)Cl. These results are consistent with a binding mode dominated by interactions with the groove of ct-DNA.

Highly Sensitive Fluorescent Probes for the Quantitative Determination of Singlet Oxygen (1O2)

  • Ahmed, Syed Rahin;Koh, Kwang-Nak;Kang, Nam-Lyong;Lee, Jae-Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1608-1612
    • /
    • 2012
  • Singlet oxygen ($^1O_2$) is an important species for oxidation in biological processes. $^1O_2$ is implicated in the genotoxic effect, and plays an important role in the cell-signaling cascade and in the induction of gene expression. However, the rapid detection of $^1O_2$ in biological environments with sufficient specificity and sensitivity is hampered by its extremely low emission probability. Here, a layer-by-layer (LbL) film of CdTe quantum dots (QDs), polymers, and ascorbate have been designed as a rapid, highly selective, and sensitive fluorescence probe for $^1O_2$ detection. Upon reaction with $^1O_2$, the probe exhibits a strong photoluminescence (PL) response even at trace levels. This remarkable PL change should enable the probe to be used for $^1O_2$ detection in many chemical and biological systems and as an environmental sensor.

Thermodynamic Investigation of the Formation of Complexes between Norfloxacin and Various Mononucleotides

  • Kwon, Yong-Jun;Lee, Hyun-Mee;Han, Sung-Wook;Lee, Dong-Jin;Cho, Tae-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3233-3238
    • /
    • 2011
  • The fluorescence of norfloxacin was quenched by various nucleotides. The ratio of the fluorescence intensities in the absence and presence of nucleotide was linearly dependent on nucleotide concentration, suggesting that quenching occurred through the formation of nonfluorescent norfloxacin-nucleotide complexes. The gradient of the linear relationship represented the equilibrium constant of complex formation; it decreased with increasing temperature. The slopes of van't Hoff plots constructed from the temperature-dependent equilibrium constants were positive in all cases, indicating that complex formation was energetically favorable - i.e., exothermic, with negative Gibb's free energy. The equilibrium constant increased when triphosphate was used instead of monophosphate. It also increased when the oxygen at the $C'_2$ position of the nucleotide was removed. Both enhancements were due to entropic effects: entropy decreased when complexes with AMP or GMP formed, while it increased when norfloxacin complexed with ATP, GTP, dAMP and dGMP.

Quercetin Directly Interacts with Vitamin D Receptor (VDR): Structural Implication of VDR Activation by Quercetin

  • Lee, Ki-Young;Choi, Hye-Seung;Choi, Ho-Sung;Chung, Ka Young;Lee, Bong-Jin;Maeng, Han-Joo;Seo, Min-Duk
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.191-198
    • /
    • 2016
  • The vitamin D receptor (VDR) is a member of the nuclear receptor (NR) superfamily. The VDR binds to active vitamin $D_3$ metabolites, which stimulates downstream transduction signaling involved in various physiological activities such as calcium homeostasis, bone mineralization, and cell differentiation. Quercetin is a widely distributed flavonoid in nature that is known to enhance transactivation of VDR target genes. However, the detailed molecular mechanism underlying VDR activation by quercetin is not well understood. We first demonstrated the interaction between quercetin and the VDR at the molecular level by using fluorescence quenching and saturation transfer difference (STD) NMR experiments. The dissociation constant ($K_d$) of quercetin and the VDR was $21.15{\pm}4.31{\mu}M$, and the mapping of quercetin subsites for VDR binding was performed using STD-NMR. The binding mode of quercetin was investigated by a docking study combined with molecular dynamics (MD) simulation. Quercetin might serve as a scaffold for the development of VDR modulators with selective biological activities.

Different Susceptibilities to Low Temperature Photoinhibition in the Photosynthetic Apparatus Among three Cultivars of Cucumber (Cucumis sativus L.)

  • Oh, Kwang-Hoon;Lee, Woo-Sung;Lee, Choon-Hwan
    • Journal of Photoscience
    • /
    • v.8 no.3_4
    • /
    • pp.105-112
    • /
    • 2001
  • Susceptibility to low temperature photoinhibition in photosynthetic apparatus was compared among three cucumber cultivars, Gahachungjang (GH), Banbaekjijeo (BB) and Gaeryangsymji (GR). By chilling in the light for 6 h, a sustained decrease in the potential quantum yield (Fv/Fm) and the oxidizable P700 contents was observed, and the decrease was less in GH than in BB and GR. Although the difference was small, some $\Phi_{PSII}$ remained in GH after light-chilling for 6 h indicating that a few electrons can flow around photosystem II(PSII). As a consequence, the primary electron acceptor of PSII, $Q_{A}$, was reduced slowly and was not fully reduced after light-chilling for 6 h in GH. Although the amplitude was small, the development of NPQ was also faster in GH, indicating a higher capacity for non-photochemical energy dissipation. The relative fraction of a fast relaxing component of NPQ (qf) was higher in GH. After light-chilling for 5 h, the values of qf in BB and GR became much smaller than that in GH, indicating BB and GR suffered more significant uncoupling of ATPase and/or irreversible damages in PSII. When fluorescence induction transients were recorded after chilling, significant differences in quenching coefficients (qQ and qN) were observed among the three cultivars.

  • PDF

Zinc Porphyrin-Cored Dendrimers; Axial Coordination of Pyridine and Photoinduced Electron Transfer to Methyl Viologen

  • Park, Ji-Eun;Choi, Dae-Ock;Shin, Eun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4247-4252
    • /
    • 2011
  • The porphyrin-incorporated arylether dendrimers ZnP-D1 and ZnP-D4 were investigated to discover the influence of dendritic environments for the axial ligation of pyridine and photoinduced electron transfer by methyl viologen. Absorption and fluorescence spectra of ZnP, ZnP-D1, and ZnP-D4 were measured in dichloromethane with the addition of pyridine or methyl viologen dichloride. Axial ligation of pyridine was confirmed by red-shifted absorption spectrum. The complex formation constants $K_f$ (Table 1) for axial coordination of pyridine on ZnP, ZnP-D1, and ZnP-D4 were estimated to be $4.4{\times}10^3\;M^{-1}$, $3.3{\times}10^3\;M^{-1}$, and $1.7{\times}10^3\;M^{-1}$, respectively. The photoinduced electron transfer to methyl viologen dichloride was confirmed by fluorescence quenching. Stern-Volmer constants Ksv for ZnP, ZnP-D1, and ZnP-D4 were calculated to be $2.6{\times}10^3$, $2.5{\times}10^3$, and $2.1{\times}10^3$, respectively. ZnP-D4 surrounded by 4 aryl ether dendrons shows the smallest $K_f$ and Ksv values, with comparison to ZnP and ZnP-D1.

Hydroxyl Radical Measurements in the Flame Using LIF (레이저유도 형광법을 이용한 화염내 OH 농도분포 계측)

  • Lee, Byeong-Jun;Gil, Yong-Seok;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.710-719
    • /
    • 1996
  • Laser applied combustion diagnostic techniques-laser induced fluorescence (LIF) and coherent anti-Stokes Ramann spectroscopy (CARS)-are demonstrated. The profiles of hydroxyl radical (OH) and temperature in the counterflow burner are measured and compared with the numerical results. OH radical is excited on the Q$_1$(6) line of the $A^2$$\sum^+$$\leftarrow$$X^2{\prod}$(1, 0) band transition (281.1 nm) and LIF signal is measured at the the bands of (0, 0) and (1, 1) transition (306~326 nm). Absolute OH radical is obtained by using the laser absorption technique. The quenching effects are considered. Temperature is measured using broadband CARS system. Two dimensional OH radical profile is also obtained. The profiles of OH radical and temperature are found to agree well with those of numerical calculation.

Detection of Volatile Organic Compounds (VOCs) using Organic-Inorganic Hybrid Perovskite Nanoparticles (유무기 페로브스카이트 나노입자의 휘발성 유기화합물 감응특성)

  • Choi, Hansol;Choi, Jihoon
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.515-521
    • /
    • 2020
  • Organic-inorganic hybrid perovskite nanocrystals have attracted a lot of attention owing to their excellent optical properties such as high absorption coefficient, high diffusion length, and photoluminescence quantum yield in optoelectronic applications. Despite the many advantages of optoelectronic materials, understanding on how these materials interact with their environments is still lacking. In this study, the fluorescence properties of methylammonium lead bromide (CH3NH3PbBr3, MAPbBr3) nanoparticles are investigated for the detection of volatile organic compounds (VOCs) and aliphatic amines (monoethylamine, diethylamine, and trimethylamine). In particular, colloidal MAPbBr3 nanoparticles demonstrate a high selectivity in response to diethylamine, in which a significant photoluminescence (PL) quenching (~ 100 %) is observed at a concentration of 100 ppm. This selectivity to the aliphatic amines may originate from the relative size of the amine molecules that must be accommodated in the perovskite crystals structure with a narrow range of tolerance factor. Sensitive PL response of MAPbBr3 nanocrystals suggests a simple and effective strategy for colorimetric and fluorescence sensing of aliphatic amines in organic solution phase.

Fluorescence Analysis of Harmful Food Colors -Establishment of Fluorescence Assay Method by the Use of Filter Paper Adsorption- (유해성(有害性) 식품착색료(食品着色料)의 형광검사(螢光檢査) -여지흡착(濾紙吸着)을 이용한 형광분석법(螢光分析法)의 확립-)

  • Lee, Mie-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.114-120
    • /
    • 1981
  • A rapid and simple method for detecting colors was attempted on the basis of absorption and emission spectra of reflected light at $45^{\circ}$ angle from color-adsorbed filter paper illuminated by ultraviolet light through interference filter. Absorption spectra of prepared samples revealed more characteristic patterns than emission spectra. Detection of colors was readily accomplished by the investigation of wave length range, distribution pattern, the number of absorption bands and the degree of quenching.

  • PDF