DOI QR코드

DOI QR Code

Thermodynamic Investigation of the Formation of Complexes between Norfloxacin and Various Mononucleotides

  • Kwon, Yong-Jun (Department of Chemistry, Yeungnam University) ;
  • Lee, Hyun-Mee (Department of Optometry and Vision Science, Catholic University of Daegu) ;
  • Han, Sung-Wook (School of Herb Medicine Resource, Kyungwoon University) ;
  • Lee, Dong-Jin (Department of Chemical Engineering, Kyoungil University) ;
  • Cho, Tae-Sub (Department of Chemistry, Yeungnam University)
  • Received : 2011.05.11
  • Accepted : 2011.07.13
  • Published : 2011.09.20

Abstract

The fluorescence of norfloxacin was quenched by various nucleotides. The ratio of the fluorescence intensities in the absence and presence of nucleotide was linearly dependent on nucleotide concentration, suggesting that quenching occurred through the formation of nonfluorescent norfloxacin-nucleotide complexes. The gradient of the linear relationship represented the equilibrium constant of complex formation; it decreased with increasing temperature. The slopes of van't Hoff plots constructed from the temperature-dependent equilibrium constants were positive in all cases, indicating that complex formation was energetically favorable - i.e., exothermic, with negative Gibb's free energy. The equilibrium constant increased when triphosphate was used instead of monophosphate. It also increased when the oxygen at the $C'_2$ position of the nucleotide was removed. Both enhancements were due to entropic effects: entropy decreased when complexes with AMP or GMP formed, while it increased when norfloxacin complexed with ATP, GTP, dAMP and dGMP.

Keywords

References

  1. Hooper, D. C.; Wolfson, J. S. Quinolone Antimicrobial Agents, 2nd ed.; American Society of Microbiology: Washington, D. C. U.S.A., 1995.
  2. Shen, L. L.; Pernet, A. G. Proc. Natl. Acad. Sci. USA 1985, 82, 307-311. https://doi.org/10.1073/pnas.82.2.307
  3. Shen, L. L. Biochem. Pharmarcol. 1989, 38, 2042-2044. https://doi.org/10.1016/0006-2952(89)90505-4
  4. Shen, L. L.; Baranowski, J.; Pernet, A. G. Biochemistry 1989, 28, 3879-3885. https://doi.org/10.1021/bi00435a038
  5. Shen, L. L.; Kohlbrenner, W. E.; Weigl, D.; Baranowski, J. J. Biol. Chem. 1989, 264, 2973-2978.
  6. Shen, L. L.; Mitscher, L. A.; Sharma, P. N.; O'Donnel, T. J.; Chu, D. W.; Cooper, C. S.; Rosen, T.; Pernet, A. G. Biochemistry 1989, 28, 3886-3894. https://doi.org/10.1021/bi00435a039
  7. Palu, G.; Valisena, S.; Peracchi, M.; Palumbo, M. Biochem. Pharmarcol. 1988, 37, 1887-1888. https://doi.org/10.1016/0006-2952(88)90496-0
  8. Palu, G.; Valisena, S.; Ciarrocchi, G.; Gatto, B.; Palumbo, M. Proc. Natl. Acad. Sci. USA 1992, 89, 9671-9675. https://doi.org/10.1073/pnas.89.20.9671
  9. Tornaletti, S.; Pedrini, A. M. Biochim. Biophys. Acta 1998, 949, 279.
  10. Baily, C.; Colson, P.; Houssier, C. Biochem. Biophys. Res. Commun. 1998, 243, 844-848. https://doi.org/10.1006/bbrc.1998.8189
  11. Son, G.-W.; Yeo, J.-A.; Kim, M.-S.; Kim, S. K.; Holmen, A.; Akerman, B.; Norden, B. J. Am. Chem. Soc. 1998, 120, 6451-6457. https://doi.org/10.1021/ja9734049
  12. Son, G.-S.; Yeo, J.-A.; Kim, J. M.; Kim, S. K.; Moon, H. Y.; Nam, W. Biophys. Chem. 1998, 74, 225-236. https://doi.org/10.1016/S0301-4622(98)00178-1
  13. Lee, E.-J.; Yeo, J.-A.; Lee, G.-J.; Han, S. W.; Kim, S. K. Eur. J. Biochem. 2000, 267, 6018. https://doi.org/10.1046/j.1432-1327.2000.01677.x
  14. Lee, E.-J.; Yeo, J.-A.; Jung, K.; Hwangbo, H. J.; Lee, G.-J.; Kim, S. K. Arch. Biochem. Biophys. 2001, 395, 21-24. https://doi.org/10.1006/abbi.2001.2563
  15. Hwangbo, H. J.; Lee, Y.-A.; Park, J. H.; Lee, Y. R.; Kim, J. M.; Yi, S.-Y.; Kim, S. K. Bull. Korean Chem. Soc. 2003, 24, 579-582. https://doi.org/10.5012/bkcs.2003.24.5.579
  16. Lee, H. M.; Kim, H. D.; Kim, J. M.; Kim, J.-K.; Kim, S. K. J. Biomol. Struc. Dyn. 2007, 25, 231-241. https://doi.org/10.1080/07391102.2007.10507172
  17. Koo, G. N.; Lee, B. H.; Kim, S. K.; Lee, H. M. Bull. Korean Chem. Soc. 2008, 29, 2103-2108. https://doi.org/10.5012/bkcs.2008.29.11.2103
  18. Hwangbo, H. J.; Yun, B. H.; Cha, J. S; Kwon, D. Y.; Kim, S. K. Eur. J. Pharm. Sci. 2003, 18, 197-203. https://doi.org/10.1016/S0928-0987(02)00279-8
  19. Hayakawa, I.; Atarashi, S.; Yokohama, S.; Imamura, M.; Sakano, K.-I.; Furukawa, M. Antimicrob. Agents Chemother. 1986, 29, 163-164. https://doi.org/10.1128/AAC.29.1.163
  20. Imamura, M.; Shibamura, S., Hayakawa, I.; Osada, Y. Antimicrob. Agents Chemother. 1987, 31, 325-327. https://doi.org/10.1128/AAC.31.2.325
  21. Hoshino, K.; Sato, K.; Akahane, K.; Yoshida, A.; Hayakawa, I.; Sato, M.; Une, T.; Osada, Y. Antimicrob. Agents Chemother. 1991, 35, 309-312. https://doi.org/10.1128/AAC.35.2.309
  22. Lakowiz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, USA, 2006.