• Title/Summary/Keyword: Fluorescence quenching

Search Result 239, Processing Time 0.021 seconds

The Region of Distribution of Barbiturates in Synaptosomal Plasma Membrane Vesicles Isolated from Rat Brain as Studied by Fluorescence Quenching (Barbiturates가 생체세포막 외측 단층의 소수성 부위와 친수성 부위에 분포되는 상대적 비율)

  • Yun, Il;Lee, Byung-Woo
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.3
    • /
    • pp.271-278
    • /
    • 1995
  • The relative distribution ratio of barbiturates between hyarocarbon interior and surface region of outer monolayer of synaptosomal plasma membrane vesicles (RSPMV) isolated from rat whole brain was determined by employing the fluorescent probe technique. The two fluorescent probes N- octadecylnaphthyl-2-amine-6-sulfonic acid (ONS) and 12-(9-anthroyloxy) stearic acid (AS) were utilized as probes for hydrocarbon interior and surface of outer monolayer of RSPMV. respectively. The Stern-Volmer equation for fluorescent quenching was modified to calculate the relative distribution ratio. The analysis of preferential quenching of these probes by barbiturates indicates that pentobarbital, hexobarbital, amobarbital and phenobarbital are predominantly distributed on the surface region. whereas thiopental sodium has an accessibility to the hydrocarbon interior of the outer monolayer of the RSPMV. From these results, it is strongly suggested that the more effective penetration into the hydrocarbon interior of the outer monolayer of the membrane lipid bilayer could result in higher general anesthetic activity.

  • PDF

The Fluorescent 7-Aminodipyrido[3,2-a:2',3'-c] phenazine(7-amino-dppz) Functionalized as an Europium Ion ($Eu^{3+}$) Sensor

  • Choi, Chang-Shik;Lee, Ki-Hwan
    • Rapid Communication in Photoscience
    • /
    • v.1 no.2
    • /
    • pp.31-33
    • /
    • 2012
  • The Fluorescent 7-aminodipyrido[3,2-a:2',3'-c]phenazine (7-amino-dppz, 1) is functionalized as an europium ion ($Eu^{3+}$) sensor, which showed the effective emission quenching when europium cation is chelated to the bpy site of 1 compound. The complexation ratio indicated that the 1 compound forms a 1 : 1 complex with $Eu^{3+}$.

Detection of Organic Halide by Using cis,cis-1,2,3,4-Tetraphenylbutadiene thin Film (cis,cis-1,2,3,4-Teteraphenylbutadiene 박막 필름을 이용한 유기 할로겐 화합물 감지)

  • Park, Jaehyun
    • Journal of Integrative Natural Science
    • /
    • v.3 no.4
    • /
    • pp.215-218
    • /
    • 2010
  • cis,cis-1,2,3,4-Tetraphenylbutadiene has been synthesized and its optical properties are investigated by using UV-Vis absorption and fluorescence spectroscopy. Thin films of tetraphenylbutadiene prepared from thin layer chromatography(TLC) displays strong luminescence and used for the detection of vapor of organic halide. Tetraphenylbutadiene shows dramatic quenching photoluminescence under exposure of chloroform vapor.

Photocycloaddition Reaction of trans-Cinnamonitrile Derivatives with Tetramethylethylene

  • Chae, Myeong-Yun;Yoon, Suk-Kyoon;Shim, Sang-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.95-98
    • /
    • 1985
  • Stereospecific [2 + 2] cycloadducts are obtained as major products when trans-cinnamonitrile derivatives are irradiated with excess tetramethylethylene. The fluorescence quenching studies, weak exciplex fluorescence, and sensitization by benzophenone suggest that this stereospecific photochemical cycloaddition reaction involves singlet exciplex intermediate formed between cinnamonitrile derivatives and tetramethylethylene.

Single C-Reactive Protein Molecule Detection on a Gold-Nanopatterned Chip Based on Total Internal Reflection Fluorescence

  • Heo, Yunmi;Lee, Seungah;Lee, Sang-Won;Kang, Seong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2725-2730
    • /
    • 2013
  • Single C-reactive protein (CRP) molecules, which are non-specific acute phase markers and products of the innate immune system, were quantitatively detected on a gold-nanopatterned biochip using evanescent field-enhanced fluorescence imaging. The $4{\times}5$ gold-nanopatterned biochip (spot diameter of 500 nm) was fabricated by electron beam nanolithography. Unlabeled CRP molecules in human serum were identified with single-molecule sandwich immunoassay by detecting secondary fluorescence generated by total internal reflection fluorescence (TIRF) microscopy. With decreased standard CRP concentrations, relative fluorescence intensities reduced in the range of 33.3 zM-800 pM. To enhance fluorescence intensities in TIRF images, the distance between biochip surface and CRP molecules was optimally adjusted by considering the quenching effect of gold and the evanescent field intensity. As a result, TIRF only detected one single-CRP molecule on the biochip the first time.

Characterization of Graphene Oxide Suspension for Fluorescence Quenching in DNA-Diagnostics

  • Kapitonov, A.N.;Alexandrov, G.N.;Vasileva, F.D.;Smagulova, S.A.;Timofeev, V.B.;Maksimova, N.R.;Kuznetsov, A.A.
    • Korean Journal of Materials Research
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • The graphene oxides (GOs) were tested as a fluorescent quencher in the field of DNA-diagnostics. The various suspensions of GO nanoplates were prepared by changing the synthesis conditions. The suspensions were stable for at least 6 weeks by differing degrees of functionalization of various oxygen-containing groups of atoms. Depending on the properties of GO nanoplates, their fluorescent quenching abilities, which were determined by the amount of the tagged immobilized oligonucleotide, were also changed. GO suspension synthesized at $75^{\circ}C$ of reaction mixture showed the fluorescent quenching of 16.39 nmol/mg, which would be a potential substitution of molecular fluorescent quencher in test-systems for DNA-diagnostics.

Photosynthetic Responses to Dehydration in Green Pepper(Capsicum annuum L.)Leaves

  • Lee, Hae-Yeon;Jun, Sung-Soo;Hong, Young-Nam
    • Journal of Photoscience
    • /
    • v.5 no.4
    • /
    • pp.169-174
    • /
    • 1998
  • Photosynthetic responses to dehydration were examined by the simulataneous measurement of O2 evolution and chlorophyll (Chl) fluorescence in green pepper leaves. Dehydration was induced by immersing the plant roots directly in the Hoagland solution containing varying concentration (2-30%) of polyethylene glycol(PEG-6000) . Water potential of the leaf was decreased time-and concentation -dependently by PEG-treatment. The decrease in water potential of leaf was correlated with the decrease in both the maximal photosynthesis (Pmax) and quantum yield of O2 evolution, but Pmax dropped more rapidly than quantum yield at all water deficit conditions tested. However, Chl fluorescence parameters were not affected much. Dehydration did not change the initial fluorescence (Fo) and maximum photochemical efficiency(Fv/Fm) of photosystem(PS) II. Both the photochemical quenching (qP) and non-photochemical quenching(NPQ) were not changed by dehydration under low PFR(50 $\mu$mols m-2s-1 ). In contrast, under high PFR(270$\mu$mols m-2s-1)qP was slightly decreased while NPQ was greatly increased. The fast induction kinetics of Chl fluroecence showed no change in Chl fluorescence pattern by dehydration at high PFR (640 $\mu$mols m-2s-1 ), but exhibited a significant drop in peak level(Fp)at low PRFR (70$\mu$mols m-2s-1 ). PS I oxidation and reduction kinetics revealed normal reduction but delayed oxidation to P-700+, suggesting no lesionin electron flow from PSII to PSI , but impaired electron transport to NADP+,These results suggest that water stress caused by PEG-treatment results in the reduction of photosynthesis, promarily due to the reducted electron trasport from PSI to NADP+ or hampered subsequent steps involving Calvin Cycle.

  • PDF

The Inactivation Effects of UV Light on Bacteriophage f2 (박테리오파지 f2에 대한 자외광선의 살균효과)

  • Kim, Chi-Kyung;Quae Chae
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.3
    • /
    • pp.155-161
    • /
    • 1983
  • The effects of ultraviolet light on bacteriophage f2 were investigated to determine the inactivation kinetics and its mechanism. The 260nm light showed a little higher inactivation rate than the one of 300 nm. In this work, our main concern was whether structural and/or conformational changes in the protein capsid could occur by UV irradiation. The inactivation for the first 20 minutes irradiation was rapid with a loss of about 4 logs and followed by a slower rate during the next 40 minutes with no survival noted in the samples irradiated for 90 minutes or longer. The structural change of the protein capsid was examined by optical spectroscopic techniques and electron microscopy. The absorption spectra of the UV irradiated phages showed no detectable differences in terms of the spectral shape and intensity from the control phage. However, the fluorescence emission spectroscopic data, i.e. 1) fluorescence quenching of tryptophan residues upon irradiation of 300 nm light, 2) enhancement of fluorescence emission of ANS (8-aniline-1-naphthalene sulfonate) bound to the intact phages compared to the one in the UV-treated phages, and 3) decrease of energy transfer efficiency from tryptophan to ANS in the UV-treated samples, presented remarkable differences between the intact and UV-treated phages. Such a structural alteration was also observed by electron microscopy The UV-treated phages appeared to be broken and empty capsids. Therefore, the inactivation of the bacteriophage f2 by UV irradiation is thought to be attributed to the structural change in the protein capsid as well as damage in the viral RNA by UV irradiation.

  • PDF

Chromophorylation of a Novel Cyanobacteriochrome GAF Domain from Spirulina and Its Response to Copper Ions

  • Jiang, Su-Dan;sheng, Yi;Wu, Xian-Jun;Zhu, Yong-Li;Li, Ping-Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.233-239
    • /
    • 2021
  • Cyanobacteriochromes (CBCRs) are phytochrome-related photoreceptor proteins in cyanobacteria and cover a wide spectral range from ultraviolet to far-red. A single GAF domain that they contain can bind bilin(s) autocatalytically via heterologous recombination and then fluoresce, with potential applications as biomarkers and biosensors. Here, we report that a novel red/green CBCR GAF domain, SPI1085g2 from Spirulina subsalsa, covalently binds both phycocyanobilin (PCB) and phycoerythrobilin (PEB). The PCB-binding GAF domain exhibited canonical red/green photoconversion with weak fluorescence emission. However, the PEB-binding GAF domain, SPI1085g2-PEB, exhibited an intense orange fluorescence (λabs.max = 520 nm, λfluor.max = 555 nm), with a fluorescence quantum yield close to 1.0. The fluorescence of SPI1085g2-PEB was selectively and instantaneously quenched by copper ions in a concentration-dependent manner and exhibited reversibility upon treatment with the metal chelator EDTA. This study identified a novel PEB-binding cyanobacteriochrome-based fluorescent protein with the highest quantum yield reported to date and suggests its potential as a biosensor for the rapid detection of copper ions.

Association between Psoralens and Some Ionic Micelles

  • Shim, Sang-Chul;Paik, Young-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.347-350
    • /
    • 1990
  • The association between psoralens and some micelles is measured by the fluorescence quenching of psoralens by methylviologen $(MV^{2+})$ and bromide ion in some ionic micellar solutions. The association constants were estimated to be ca. $10^4$ for all the psoralens studied even though they show different hydrophobicity.