Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.1.1

Characterization of Graphene Oxide Suspension for Fluorescence Quenching in DNA-Diagnostics  

Kapitonov, A.N. (M.K. Ammosov North-Eastern Federal University)
Alexandrov, G.N. (M.K. Ammosov North-Eastern Federal University)
Vasileva, F.D. (M.K. Ammosov North-Eastern Federal University)
Smagulova, S.A. (M.K. Ammosov North-Eastern Federal University)
Timofeev, V.B. (M.K. Ammosov North-Eastern Federal University)
Maksimova, N.R. (M.K. Ammosov North-Eastern Federal University)
Kuznetsov, A.A. (M.K. Ammosov North-Eastern Federal University)
Publication Information
Korean Journal of Materials Research / v.26, no.1, 2016 , pp. 1-7 More about this Journal
Abstract
The graphene oxides (GOs) were tested as a fluorescent quencher in the field of DNA-diagnostics. The various suspensions of GO nanoplates were prepared by changing the synthesis conditions. The suspensions were stable for at least 6 weeks by differing degrees of functionalization of various oxygen-containing groups of atoms. Depending on the properties of GO nanoplates, their fluorescent quenching abilities, which were determined by the amount of the tagged immobilized oligonucleotide, were also changed. GO suspension synthesized at $75^{\circ}C$ of reaction mixture showed the fluorescent quenching of 16.39 nmol/mg, which would be a potential substitution of molecular fluorescent quencher in test-systems for DNA-diagnostics.
Keywords
graphene oxide; DNA diagnostics; fluorescent quencher;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Mustafa, R. Muhit, R. Neil and V. Y. Mehmet, ACS Appl. Mater. Inter., 15, 12100 (2014).
2 A. A. Kuznetsov, N. R. Maksimova, G. N. Alekxandrov and S. A. Smagulova,Yakut Medical J., 4, 74 (2014).
3 S. He, B. Song and D. Li, Adv. Funct. Mater., 20, 453 (2012).
4 H. H. Yang, C. L. Zhu, X. Chen and L. Chen, Angew. Chem. Int. Ed., 48, 4785 (2009).   DOI
5 J. Huang and J. Liu, Anal. Chem., 84, 4192 (2012).   DOI
6 J. Li, Y. Huang, D. Wang, B. Song, Z. Li, S. Song, L. Wang, B. Jiang, X. Zhao, J. Yan, R. Liu, D. Hec and C. Fana, Chem. Commun., 49, 3125 (2013).   DOI
7 D. Xiang, A. H. Zheng, M. Luo, X. H. Ji and Z. K. He, Sci. China Chem., 56, 380 (2013).   DOI
8 F. Li, Y. Huang, Q. Yang, Z. Zhong, D. Li, L. Wang, S. Song and C. Fan, Nanoscale, 2, 1021 (2010).   DOI
9 H. Xu, Q. Yang, F. Li, L. Tang, S. Gao, B. Jiang, X. Zhao, L. Wang and C. Fan, Analyst, 138, 2678 (2013).   DOI
10 X. H. Zhao, Q. J. Ma, X. X. Wu and X. Zhu, Anal. Chim. Acta, 727, 67 (2012).   DOI
11 M. Zhang, H. N. Le and B. C. Ye, ACS Appl. Mater. Inter., 5, 8278 (2013).   DOI
12 H. Dong, W. Gao, F. Yan, H. Ji and H. Ju, Anal. Chem., 82, 5511 (2010).   DOI
13 M. Liu, H. Zhao, S. Chen, H. Yu, Y. Zhang and X. Quan, Biosens. Bioelectron., 26, 4213 (2011).   DOI
14 Z. Li, W. Zhu, J. Zhang, J. Jiang, G. Shen and R. Yu, Analyst, 138, 3616 (2013).   DOI
15 W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).   DOI