• Title/Summary/Keyword: Fluorescence method

Search Result 1,009, Processing Time 0.029 seconds

Europium-Enoxacin Complex as Fluorescence Probe for the Determination of Folic Acid in Pharmaceutical and Biological Samples

  • Alam, Al-Mahmnur;Kamruzzaman, Mohammad;Lee, Sang-Hak;Kim, Young-Ho;Min, Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.3055-3060
    • /
    • 2012
  • A simple, rapid and sensitive spectrofluorometric method was developed for the determination of folic acid (FA), based on its quenching effect on the fluorescence intensity of enoxacin (ENX)-europium ($Eu^{3+}$) complex as a fluorescent probe. Fluorometric interaction between ENX-$Eu^{3+}$ complex and FA was studied using UV-visible and fluorescence spectroscopy. The quenched fluorescence intensity at an emission wavelength of 614 nm was proportional to the concentration of FA. Optimum conditions for the determination of FA were investigated. Under optimal conditions, the reduced fluorescence intensity at 614 nm was responded linearly with the concentration of FA. The linearity was maintained in the range of $1.25{\times}10^{-9}$ to $1.50{\times}10^{-7}$ M (R = 0.9986) with the limit of detection ($3S_b/m$) (where $S_b$ is the standard deviation of blank and m is the slop of linear calibration curve) of $6.94{\times}10^{-10}$ M. The relative standard deviation (RSD) for 9 repeated measurements of $1.0{\times}10^{-9}$ M FA was 1.42%. This method was simple, cost effective, and relatively free of interference from coexisting substances. Successful determinations of FA in pharmaceutical formulation and biological samples with the developed method were demonstrated.

Noise Characteristic Analysis of X-Ray Fluorescence Spectrum (형광 X-선 스펙트럼의 잡음 특징 분석)

  • Lee, Jae-Hwan;Chon, Sun-Il;Yang, Sang-Hoon;Park, Dong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2298-2304
    • /
    • 2012
  • X-ray fluorescence spectrum analysis method can be applied in many areas, including concentration analysis of RoHS elements and heavy metals etc. and we can get analysis results in a relatively short time. Because X-ray fluorescence spectrum has noises and several artifacts that lowers the accuracy of the analysis. This paper analyzes the characteristics of the noise of the X-ray fluorescence spectrum to increase the accuracy of analysis. X-ray fluorescence spectrum have the characteristics of shot noise (Poisson noise), so the noise size is relatively large in the small signal portion and the noise the size is relatively small in the large part of the signal. Existing methods of analysis and to remove noises is a method for general purposes algorithm. Since these algorithm does not reflect these noise characteristics, we get distorted analysis result. We can design efficient noise remove algorithm based on the accurate noise analysis method, and we expect high accuracy results of the elemental concentration analysis result.

Development Behavior of Vaporizing Sprays from a High-Pressure Swirl Injector Using Exciplex Fluorescence Method

  • Choi, Dong-Seok;Kim, Duck-Jool;Hwang, Soon-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1143-1150
    • /
    • 2000
  • The effects of ambient conditions on vaporizing sprays from a high-pressure swirl injector were investigated by an exciplex fluorescence method. Dopants used were 2% fluorobenzene and 9% DEMA (diethyl-methyl-amine) in 89% solution of hexane by volume. In order to examine the behavior of liquid and vapor phases inside of vaporizing sprays, ambient temperatures and pressures similar to engine atmospheres were set. It was found that the ambient pressure had a significant effect on the axial growth of spray, while ambient temperature had a great influence on the radial growth. The spatial distribution of vapor phase at temperatures above 473K became wider than that of liquid phase after half of injection duration. From the analysis of the area ratio for each phase, the middle part (region II) in the divided region was the region which liquid and vapor phases intersect. For liquid phase, fluorescence-intensity ratio was greatly changed at lms after the start of injection. However, the ratio of vapor phase was nearly uniform in each divided region throughout the injection.

  • PDF

Acetone PLIF for Fuel Distribution Measurements in Liquid Phase LPG Injection Engine (LPG 액상분사 엔진에서 아세톤 PLIF를 이용한 연료분포 측정기법 연구)

  • 오승묵;박승재;허환일;강건용;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.74-82
    • /
    • 2004
  • Planar laser-induced fluorescence(PLIF) has been widely used to obtain two dimensional fuel distribution. Acetone PLIF is chosen because fluorescence signal from acetone as a fluorescent tracer is less sensitive to oxygen quenching than other dopants. Acetone PLIF is applied to measure quantitative air excess ratio distribution in an engine fueled with LPG. Acetone is excited by KrF excimer laser (248nm) and its fluorescence image is acquired by ICCD camera with a cut-off filter to suppress Mie scattering from the laser light. For the purpose of quantifying PLIF signal, an image processing method including the correction of laser sheet beam profile is suggested. Raw images are divided by each intensity of laser energy and profile of laser sheet beam. Inhomogeneous fluorescence images scaled with the reference data, which is taken by a calibration process, are converted to air excess ratio distribution. This investigation shows instantaneous quantitative measurement of planar air excess ratio distribution for gaseous fuel.

Haematococcus pluvialis Cell-Mass Sensing Using Ultraviolet Fluorescence Spectroscopy

  • Lababpour, Abdolmajid;Hong, Seong-Joo;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.1922-1929
    • /
    • 2007
  • A simple whole-cell-based sensing system is proposed for determining the cell mass of H. pluvialis using ultraviolet fluorescence spectroscopy. An emission signal at 368 nm was used to detect the various kinds of green, green-brown, brown-red, and red H. pluvialis cells. The fluorescence emission intensities of the cells were highest at 368 nm with an excitation wavelength of 227 nm. An excitation wavelength of 227 nm was then selected for cell-mass sensing, as the emission fluorescence intensities of the cell suspensions were highest at this wavelength after subtracting the background interference. The emission fluorescence intensities of HPLC-grade water, filtered water, and HPLC-grade water containing a modified Bold's basal medium (MBBM) were measured and the difference was less than 1.6 for the selected wavelengths. Moreover, there was no difference in the emission intensity at 368 nm among suspensions of the various morphological states of the cells. A calibration curve of the fluorescence emission intensities. and cell mass was obtained with a high correlation ($R^2=0.9938$) for the various morphological forms of H. pluvialis. Accordingly, the proposed method showed no significant dependency on the various morphological cell forms, making it applicable for cell-mass measurement. A high correlation was found between the fluorescence emission intensities and the dry cell weight with a mixture of green, green-brown, brown-red, and red cells. In conclusion, the proposed model can be directly used for cell-mass sensing without any pretreatment and has potential use as a noninvasive method for the online determination of algal biomass.

The study on the Fluorescence Characteristics of Several Freshwater Bloom Forming Algal Species and Its Application (수종 담수적조 원인종들의 형광특성과 적용연구)

  • Son, Moon-Ho;Zulfugarov, Ismayil S.;Kwon, O-Seob;Moon, Byoung-Young;Chung, Ik-Kyo;Lee, Choon-Hwan;Lee, Jin-Ae
    • ALGAE
    • /
    • v.20 no.2
    • /
    • pp.113-120
    • /
    • 2005
  • The freshwater blooms mainly blue-green algal blooms occur frequently in the lower Naktong River in summer, which provoke many socio-economical problems; therefore, the early detection of bloom events are demanding through the quantitative and qualitative analyses of blue green algal species. The in vivo fluorescence properties of cultured strains of Microcystis aeruginosa, M. viridis, M. wesenbergii, M. ichthyoblabe, Anabaena cylindrica, A. flos-aquae, and Synedra sp. were investigated. Wild phytoplankton communities of the lower Naktong River were also monitored at four stations in terms of their standing stocks, biomass and fluorescence properties compared with its absorption spectram. The 77K fluorescence emission spectra of each cultured strains normalized at 620 nm was very specific and enabled to detect of blue green algal biomass qualitatively and quantitatively. The relative chlorophyll a concentration determined by chlorophyll fluorescence analysis method showed significant relationship with chlorophyll a concentration determined by solvent extraction method ($R^2$ = 0.906), and the blue-green algal cell number determined by microscopic observation ($R^2$ = 0.588), which gives insight into applications to early detection of blue green algal bloom.

Plasmonic Nanosheet towards Biosensing Applications

  • Tamada, Kaoru
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.105-106
    • /
    • 2013
  • Surface plasmon resonance (SPR) is classified into the propagating surface plasmon (PSP) excited on flat metal surfaces and the local surface plasmon (LSP) excited by metalnanoparticles. It is known that fluorescence signals are enhanced by these two SPR-fields.On the other hand, fluorescence is quenched by the energy transfer to metal (FRET). Bothphenomena are controlled by the distance between dyes and metals, and the degree offluorescence enhancement is determined by the correlation. In this study, we determined thecondition to achieve the maximum fluorescence enhancement by adjusting the distance of ametal nanoparticle 2D sheet and a quantum dots 2D sheet by the use of $SiO_2$ spacer layers. The 2D sheets consisting of myristate-capped Ag nanoparticles (AgMy nanosheets) wereprepared at the air-water interface and transferred onto hydrophobized gold thin films basedon the Langmuir-Schaefer (LS) method [1]. The $SiO_2$ sputtered films with different thickness (0~100 nm) were deposited on the AgMy nanosheet as an insulator. TOPO-cappedCdSe/CdZnS/ZnS quantum dots (QDs, ${\lambda}Ex=638nm$) [2] were also transferred onto the $SiO_2$ films by the LS method. The layered structure is schematically shown in Fig. 1. The result of fluorescence measurement is shown in Fig. 2. Without the $SiO_2$ layer, the fluorescence intensity of the layered QD film was lower than that of the original QDs layer, i.e., the quenching by FRET was predominant. When the $SiO_2$ thickness was increased, the fluorescence intensity of the layered QD film was higher than that of the original QDs layer, i.e., the SPR enhancement was predominant. The fluorescence intensity was maximal at the $SiO_2$ thickness of 20 nm, particularly when the LSPR absorption wavelength (${\lambda}=480nm$) was utilized for the excitation. This plasmonic nanosheet can be integrated intogreen or bio-devices as the creation point ofenhanced LSPR field.

  • PDF

An Apparatus for Monitoring Real-time Uranium Concentration Using Fluorescence Intensity at Time Zero

  • Lee, Sang-Mock;Shin, Jang-Soo;Kang, Shin-Won
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.166-174
    • /
    • 2001
  • An apparatus for detecting remote real-time uranium concentration using an optrode was developed. An optrode to detect uranium fluorescence as remote real-time control was designed. Fluorescence intensity at time 2ero was derived by the fluorescence signal processing and the algorithm to exclude the quenching effect of various quenchers and temperature fluctuations. This apparatus employing the above deriving method and the optrode has an error range within 6% in spite of serious fluorescence lifetime changes due to the quenching effect and temperature fluctuations. The detection limit is 0.06 ppm and the linearity is excellent between 0.06 ppm and 2 ppm on the aqueous uranium solution.

  • PDF

Spectroscopic investigations on the interaction of bovine serum albumin with amoxicillin and cloxacillin

  • BHALCHANDRA P. KAMAT,
    • Journal of Photoscience
    • /
    • v.12 no.1
    • /
    • pp.11-15
    • /
    • 2005
  • The mechanism of interaction of two drugs viz., amoxicillin and cloxacillin with bovine serum albumin has been investigated using fluorescence absorption and circular dichroism spectroscopy. The quenching mechanism of fluorescence of bovine serum albumin by amoxicillin and cloxacillin was discussed. The binding sites number n and apparent binding constant Kwere measured by fluorescence quenching method. The thermodynamic parameters obtained from data at different temperatures were calculated. The distance r between donor (bovine serum albumin) and acceptor (amoxicillin and cloxacillin) was obtained according to Forster theory of non-radiative energy transfer. The effect of common ions on binding constant was also investigated. The results of synchronous fluorescence spectra, UV-vis absorption spectra and circular dichroism of BSA in presence of amoxicillin and cloxacillin show that the conformation of bovine serum albumin changed

  • PDF

Real-Time Fluorescence Imaging in Thoracic Surgery

  • Das, Priyanka;Santos, Sheena;Park, G. Kate;I, Hoseok;Choi, Hak Soo
    • Journal of Chest Surgery
    • /
    • v.52 no.4
    • /
    • pp.205-220
    • /
    • 2019
  • Near-infrared (NIR) fluorescence imaging provides a safe and cost-efficient method for immediate data acquisition and visualization of tissues, with technical advantages including minimal autofluorescence, reduced photon absorption, and low scattering in tissue. In this review, we introduce recent advances in NIR fluorescence imaging systems for thoracic surgery that improve the identification of vital tissues and facilitate the resection of tumorous tissues. When coupled with appropriate NIR fluorophores, NIR fluorescence imaging may transform current intraoperative thoracic surgery methods by enhancing the precision of surgical procedures and augmenting postoperative outcomes through improvements in diagnostic accuracy and reductions in the remission rate.