Browse > Article
http://dx.doi.org/10.5090/kjtcs.2019.52.4.205

Real-Time Fluorescence Imaging in Thoracic Surgery  

Das, Priyanka (Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School)
Santos, Sheena (Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School)
Park, G. Kate (Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School)
I, Hoseok (Department of Thoracic and Cardiovascular Surgery, Pusan National University Hospital, Pusan National University School of Medicine)
Choi, Hak Soo (Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School)
Publication Information
Journal of Chest Surgery / v.52, no.4, 2019 , pp. 205-220 More about this Journal
Abstract
Near-infrared (NIR) fluorescence imaging provides a safe and cost-efficient method for immediate data acquisition and visualization of tissues, with technical advantages including minimal autofluorescence, reduced photon absorption, and low scattering in tissue. In this review, we introduce recent advances in NIR fluorescence imaging systems for thoracic surgery that improve the identification of vital tissues and facilitate the resection of tumorous tissues. When coupled with appropriate NIR fluorophores, NIR fluorescence imaging may transform current intraoperative thoracic surgery methods by enhancing the precision of surgical procedures and augmenting postoperative outcomes through improvements in diagnostic accuracy and reductions in the remission rate.
Keywords
Intraoperative imaging; Fluorescence; Near-infrared; Thoracic surgery; Lymph nodes;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Miot-Noirault E, Guicheux J, Vidal A, et al. In vivo experimental imaging of osteochondral defects and their healing using (99m)Tc-NTP 15-5 radiotracer. Eur J Nucl Med Mol Imaging 2012;39:1169-72.   DOI
2 Jo D, Hyun H. Structure-inherent targeting of near-infrared fluorophores for image-guided surgery. Chonnam Med J 2017;53:95-102.   DOI
3 Mailis A, Umana M, Feindel CM. Anterior intercostal nerve damage after coronary artery bypass graft surgery with use of internal thoracic artery graft. Ann Thorac Surg 2000;69:1455-8.   DOI
4 Kretschmer T, Heinen CW, Antoniadis G, Richter HP, Konig RW. Iatrogenic nerve injuries. Neurosurg Clin N Am 2009;20:73-90.   DOI
5 Katahira A, Niikura H, Kaiho Y, et al. Intraoperative electrical stimulation of the pelvic splanchnic nerves during nerve-sparing radical hysterectomy. Gynecol Oncol 2005;98:462-6.   DOI
6 Cotero VE, Siclovan T, Zhang R, et al. Intraoperative fluorescence imaging of peripheral and central nerves through a myelin-selective contrast agent. Mol Imaging Biol 2012;14:708-17.   DOI
7 Vinegoni C, Botnaru I, Aikawa E, et al. Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci Transl Med 2011;3:-84ra45.   DOI
8 Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2005;2:541-53.   DOI
9 Shimada Y, Okumura T, Nagata T, et al. Usefulness of blood supply visualization by indocyanine green fluorescence for reconstruction during esophagectomy. Esophagus 2011;8:259-66.   DOI
10 Ly HQ, Hoshino K, Pomerantseva I, et al. In vivo myocardial distribution of multipotent progenitor cells following intracoronary delivery in a swine model of myocardial infarction. Eur Heart J 2009;30:2861-8.   DOI
11 Osaki Y, Hatazawa J. PET/SPECT. Equil Res 2009;68:54-61.   DOI
12 Park GK, Hoseok I, Kim GS, Hwang NS, Choi HS. Optical spectroscopic imaging for cell therapy and tissue engineering. Appl Spectrosc Rev 2018;53:360-75.   DOI
13 Owens EA, Henary M, El Fakhri G, Choi HS. Tissue-specific near-infrared fluorescence imaging. Acc Chem Res 2016;49:1731-40.   DOI
14 Haidekker MA. Computed tomography. In: Haidekker MA, editor. Medical imaging technology. New York (NY): Springer; 2013. p. 37-53.
15 Haidekker MA. Magnetic resonance imaging. In: Haidekker MA, editor. Medical imaging technology. New York (NY): Springer; 2013. p. 67-96.
16 Hu S, Kang H, Baek Y, El Fakhri G, Kuang A, Choi HS. Realtime imaging of brain tumor for image-guided surgery. Adv Healthc Mater 2018;7:1800066.   DOI
17 Haidekker MA. X-ray projection imaging. In: Haidekker MA, editor. Medical imaging technology. New York (NY): Springer; 2013. p. 13-35.
18 Hingorani DV, Whitney MA, Friedman B, et al. Nerve-targeted probes for fluorescence-guided intraoperative imaging. Theranostics 2018;8:4226-37.   DOI
19 He K, Zhou J, Yang F, et al. Near-infrared intraoperative imaging of thoracic sympathetic nerves: from preclinical study to clinical trial. Theranostics 2018;8:304-13.   DOI
20 Gibbs-Strauss SL, Nasr KA, Fish KM, et al. Nerve-highlighting fluorescent contrast agents for image-guided surgery. Mol Imaging 2011;10:91-101.
21 Park MH, Hyun H, Ashitate Y, et al. Prototype nerve-specific near-infrared fluorophores. Theranostics 2014;4:823-33.   DOI
22 Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J 2008;22:659-61.   DOI
23 Araki T, Nishino M, Gao W, et al. Normal thymus in adults: appearance on CT and associations with age, sex, BMI and smoking. Eur Radiol 2016;26:15-24.   DOI
24 Nasseri F, Eftekhari F. Clinical and radiologic review of the normal and abnormal thymus: pearls and pitfalls. Radiographics 2010;30:413-28.   DOI
25 Son J, Yi G, Yoo J, Park C, Koo H, Choi HS. Light-responsive nanomedicine for biophotonic imaging and targeted therapy. Adv Drug Deliv Rev 2019;138:133-47.   DOI
26 Haidekker MA. Ultrasound imaging. In: Haidekker MA, editor. Medical imaging technology. New York (NY): Springer; 2013. p. 97-110.
27 Owens EA, Lee S, Choi J, Henary M, Choi HS. NIR fluorescent small molecules for intraoperative imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015;7:828-38.   DOI
28 Kim T, O'Brien C, Choi HS, Jeong MY. Fluorescence molecular imaging systems for intraoperative image-guided surgery. Appl Spectrosc Rev 2018;53:349-59.   DOI
29 Chang JM, Lee HJ, Goo JM, et al. False positive and false negative FDG-PET scans in various thoracic diseases. Korean J Radiol 2006;7:57-69.   DOI
30 Chung JE, Tan S, Gao SJ, et al. Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy. Nat Nanotechnol 2014;9:907-12.   DOI
31 Ofori LO, Withana NP, Prestwood TR, et al. Design of protease activated optical contrast agents that exploit a latent lysosomotropic effect for use in fluorescence-guided surgery. ACS Chem Biol 2015;10:1977-88.   DOI
32 Predina JD, Newton AD, Desphande C, Singhal S. Near-infrared intraoperative imaging during resection of an anterior mediastinal soft tissue sarcoma. Mol Clin Oncol 2018;8:86-8.
33 Wen CT, Liu YY, Fang HY, Hsieh MJ, Chao YK. Image-guided video-assisted thoracoscopic small lung tumor resection using near-infrared marking. Surg Endosc 2018;32:4673-80.   DOI
34 Okusanya OT, Holt D, Heitjan D, et al. Intraoperative near-infrared imaging can identify pulmonary nodules. Ann Thorac Surg 2014;98:1223-30.   DOI
35 Hihara J, Mukaida H, Hirabayashi N. Gastrointestinal stromal tumor of the esophagus: current issues of diagnosis, surgery and drug therapy. Transl Gastroenterol Hepatol 2018;3:6.   DOI
36 Fujimoto S, Muguruma N, Okamoto K, et al. A novel theranostic combination of near-infrared fluorescence imaging and laser irradiation targeting c-KIT for gastrointestinal stromal tumors. Theranostics 2018;8:2313-28.   DOI
37 Kang H, Gravier J, Bao K, et al. Renal clearable organic nanocarriers for bioimaging and drug delivery. Adv Mater 2016;28:8162-8.   DOI
38 Troyan SL, Kianzad V, Gibbs-Strauss SL, et al. The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann Surg Oncol 2009;16:2943-52.   DOI
39 DSouza AV, Lin H, Henderson ER, Samkoe KS, Pogue BW. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging. J Biomed Opt 2016;21:80901.   DOI
40 Yang AW, Cho SU, Jeong MY, Choi HS. NIR fluorescence imaging systems with optical packaging technology. J Microelectron Packag Soc 2014;21:25-31.
41 Gioux S, Choi HS, Frangioni JV. Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol Imaging 2010;9:237-55.
42 Khullar OV, Gilmore DM, Matsui A, Ashitate Y, Colson YL. Preclinical study of near-infrared-guided sentinel lymph node mapping of the porcine lung. Ann Thorac Surg 2013;95:312-8.   DOI
43 Li X, Chen S, Jiang L, et al. Precise intraoperative sentinel lymph node biopsies guided by lymphatic drainage in breast cancer. Oncotarget 2017;8:63064-72.   DOI
44 Khullar O, Frangioni JV, Grinstaff M, Colson YL. Imageguided sentinel lymph node mapping and nanotechnologybased nodal treatment in lung cancer using invisible near-infrared fluorescent light. Semin Thorac Cardiovasc Surg 2009;21:309-15.   DOI
45 Zhou J, Yang F, Jiang G, Wang J. Applications of indocyanine green based near-infrared fluorescence imaging in thoracic surgery. J Thorac Dis 2016;8(Suppl 9):S738-43.   DOI
46 Soltesz EG, Kim S, Laurence RG, et al. Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots. Ann Thorac Surg 2005;79:269-77.   DOI
47 Kim S, Lim YT, Soltesz EG, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 2004;22:93-7.   DOI
48 Frangioni JV, Kim SW, Ohnishi S, Kim S, Bawendi MG. Sentinel lymph node mapping with type-II quantum dots. Methods Mol Biol 2007;374:147-59.
49 Parungo CP, Ohnishi S, De Grand AM, et al. In vivo optical imaging of pleural space drainage to lymph nodes of prognostic significance. Ann Surg Oncol 2004;11:1085-92.   DOI
50 Parungo CP, Colson YL, Kim SW, et al. Sentinel lymph node mapping of the pleural space. Chest 2005;127:1799-804.   DOI
51 Ashitate Y, Levitz A, Park MH, et al. Endocrine-specific NIR fluorophores for adrenal gland targeting. Chem Commun (Camb) 2016;52:10305-8.   DOI
52 Choi HS, Gibbs SL, Lee JH, et al. Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat Biotechnol 2013;31:148-53.   DOI
53 Hyun H, Henary M, Gao T, et al. 700-nm zwitterionic near-infrared fluorophores for dual-channel image-guided surgery. Mol Imaging Biol 2016;18:52-61.   DOI
54 Ashitate Y, Kim SH, Tanaka E, et al. Two-wavelength near-infrared fluorescence for the quantitation of drug antiplatelet effects in large animal model systems. J Vasc Surg 2012;56:171-80.   DOI
55 Ashitate Y, Stockdale A, Choi HS, Laurence RG, Frangioni JV. Real-time simultaneous near-infrared fluorescence imaging of bile duct and arterial anatomy. J Surg Res 2012;176:7-13.   DOI
56 Hirche C, Murawa D, Mohr Z, Kneif S, Hunerbein M. ICG fluorescence-guided sentinel node biopsy for axillary nodal staging in breast cancer. Breast Cancer Res Treat 2010;121:373-8.   DOI
57 Chi C, Ye J, Ding H, et al. Use of indocyanine green for detecting the sentinel lymph node in breast cancer patients: from preclinical evaluation to clinical validation. PLoS One 2013;8:e83927.   DOI
58 Sugie T, Kinoshita T, Masuda N, et al. Evaluation of the clinical utility of the ICG fluorescence method compared with the radioisotope method for sentinel lymph node biopsy in breast cancer. Ann Surg Oncol 2016;23:44-50.   DOI
59 Grischke EM, Rohm C, Hahn M, Helms G, Brucker S, Wallwiener D. ICG fluorescence technique for the detection of sentinel lymph nodes in breast cancer: results of a prospective open-label clinical trial. Geburtshilfe Frauenheilkd 2015;75:935-40.   DOI
60 Tagaya N, Yamazaki R, Nakagawa A, et al. Intraoperative identification of sentinel lymph nodes by near-infrared fluorescence imaging in patients with breast cancer. Am J Surg 2008;195:850-3.   DOI
61 Guo J, Yang H, Wang S, et al. Comparison of sentinel lymph node biopsy guided by indocyanine green, blue dye, and their combination in breast cancer patients: a prospective cohort study. World J Surg Oncol 2017;15:196.   DOI
62 Tagaya N, Aoyagi H, Nakagawa A, et al. A novel approach for sentinel lymph node identification using fluorescence imaging and image overlay navigation surgery in patients with breast cancer. World J Surg 2011;35:154-8.   DOI
63 Van der Vorst JR, Schaafsma BE, Verbeek FP, et al. Randomized comparison of near-infrared fluorescence imaging using indocyanine green and 99(m) technetium with or without patent blue for the sentinel lymph node procedure in breast cancer patients. Ann Surg Oncol 2012;19:4104-11.   DOI
64 Hyun H, Park MH, Owens EA, et al. Structure-inherent targeting of near-infrared fluorophores for parathyroid and thyroid gland imaging. Nat Med 2015;21:192-7.   DOI
65 Ashitate Y, Vooght CS, Hutteman M, Oketokoun R, Choi HS, Frangioni JV. Simultaneous assessment of luminal integrity and vascular perfusion of the gastrointestinal tract using dual-channel near-infrared fluorescence. Mol Imaging 2012;11:301-8.
66 Hyun H, Owens EA, Wada H, et al. Cartilage-specific near-infrared fluorophores for biomedical imaging. Angew Chem Int Ed Engl 2015;54:8648-52.   DOI
67 Hyun H, Wada H, Bao K, et al. Phosphonated near-infrared fluorophores for biomedical imaging of bone. Angew Chem Int Ed Engl 2014;53:10668-72.   DOI
68 Kim SH, Lee JH, Hyun H, et al. Near-infrared fluorescence imaging for noninvasive trafficking of scaffold degradation. Sci Rep 2013;3:1198.   DOI
69 Tong M, Guo W, Gao W. Use of fluorescence imaging in combination with patent blue dye versus patent blue dye alone in sentinel lymph node biopsy in breast cancer. J Breast Cancer 2014;17:250-5.   DOI
70 Schaafsma BE, Verbeek FP, Rietbergen DD, et al. Clinical trial of combined radio- and fluorescence-guided sentinel lymph node biopsy in breast cancer. Br J Surg 2013;100:1037-44.   DOI
71 Toh U, Iwakuma N, Mishima M, Okabe M, Nakagawa S, Akagi Y. Navigation surgery for intraoperative sentinel lymph node detection using Indocyanine green (ICG) fluorescence real-time imaging in breast cancer. Breast Cancer Res Treat 2015;153:337-44.   DOI
72 Liu J, Huang L, Wang N, Chen P. Indocyanine green detects sentinel lymph nodes in early breast cancer. J Int Med Res 2017;45:514-24.   DOI
73 Papathemelis T, Jablonski E, Scharl A, et al. Sentinel lymph node biopsy in breast cancer patients by means of indocyanine green using the Karl Storz VITOM(R) fluorescence camera. Biomed Res Int 2018;2018:6251468.
74 Yamamoto M, Sasaguri S, Sato T. Assessing intraoperative blood flow in cardiovascular surgery. Surg Today 2011;41:1467-74.   DOI
75 Marshall MV, Rasmussen JC, Tan IC, et al. Near-infrared fluorescence imaging in humans with indocyanine green: a review and update. Open Surg Oncol J 2010;2:12-25.   DOI
76 Lin MW, Chen JS. Image-guided techniques for localizing pulmonary nodules in thoracoscopic surgery. J Thorac Dis 2016;8(Suppl 9):S749-55.   DOI
77 Owens SL. Indocyanine green angiography. Br J Ophthalmol 1996;80:263-6.   DOI
78 Owens EA, Hyun H, Tawney JG, Choi HS, Henary M. Correlating molecular character of NIR imaging agents with tissue-specific uptake. J Med Chem 2015;58:4348-56.   DOI
79 Owens EA, Hyun H, Dost TL, et al. Near-infrared illumination of native tissues for image-guided surgery. J Med Chem 2016;59:5311-23.   DOI
80 Owens EA, Hyun H, Kim SH, et al. Highly charged cyanine fluorophores for trafficking scaffold degradation. Biomed Mater 2013;8:014109.   DOI
81 Wada H, Hyun H, Kang H, et al. Intraoperative near-infrared fluorescence imaging of thymus in preclinical models. Ann Thorac Surg 2017;103:1132-41.   DOI
82 Wada H, Hyun H, Vargas C, et al. Sentinel lymph node mapping of liver. Ann Surg Oncol 2015;22 Suppl 3:S1147-55.   DOI
83 Ashitate Y, Hyun H, Kim SH, et al. Simultaneous mapping of pan and sentinel lymph nodes for real-time image- guided surgery. Theranostics 2014;4:693-700.   DOI
84 Ujiie H, Effat A, Yasufuku K. Image-guided thoracic surgery in the hybrid operation room. J Vis Surg 2017;3:148.   DOI
85 Hackethal A, Hirschburger M, Eicker SO, Mucke T, Lindner C, Buchweitz O. Role of indocyanine green in fluorescence imaging with near-infrared light to identify sentinel lymph nodes, lymphatic vessels and pathways prior to surgery: a critical evaluation of options. Geburtshilfe Frauenheilkd 2018;78:54-62.   DOI
86 Hong G, Lee JC, Robinson JT, et al. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 2012;18:1841-6.   DOI
87 Haque A, Faizi MS, Rather JA, Khan MS. Next generation NIR fluorophores for tumor imaging and fluorescenceguided surgery: a review. Bioorg Med Chem 2017;25:2017-34.   DOI
88 Tempany CM, Jayender J, Kapur T, et al. Multimodal imaging for improved diagnosis and treatment of cancers. Cancer 2015;121:817-27.   DOI
89 Luo X, Mori K, Peters TM. Advanced endoscopic navigation: surgical big data, methodology, and applications. Annu Rev Biomed Eng 2018;20:221-51.   DOI
90 Kajiwara N, Maeda J, Yoshida K, et al. Maximizing use of robot-arm no. 3 in daVinci-assisted thoracic surgery. Int Surg 2015;100:930-3.   DOI
91 Han KN, Kim HK. Imaging techniques for minimally invasive thoracic surgery-Korea University Guro Hospital experiences. J Thorac Dis 2018;10(Suppl 6):S731-8.   DOI
92 Kumar A, Asaf BB. Robotic thoracic surgery: the state of the art. J Minim Access Surg 2015;11:60-7.   DOI
93 Palep JH. Robotic assisted minimally invasive surgery. J Minim Access Surg 2009;5:1-7.   DOI
94 Veronesi G, Novellis P, Voulaz E, Alloisio M. Robot-assisted surgery for lung cancer: state of the art and perspectives. Lung Cancer 2016;101:28-34.   DOI
95 Wagner OJ, Louie BE, Vallieres E, Aye RW, Farivar AS. Near-infrared fluorescence imaging can help identify the contralateral phrenic nerve during robotic thymectomy. Ann Thorac Surg 2012;94:622-5.   DOI
96 Latif MJ, Park BJ. Robotics in general thoracic surgery procedures. J Vis Surg 2017;3:44.   DOI
97 Suda T. Transition from video-assisted thoracic surgery to robotic pulmonary surgery. J Vis Surg 2017;3:55.   DOI
98 Wada H, Hyun H, Bao K, et al. Multivalent mannose-decorated NIR nanoprobes for targeting pan lymph nodes. Chem Eng J 2018;340:51-7.   DOI
99 Drevet G, Conti M, Deslauriers J. Surgical anatomy of the tracheobronchial tree. J Thorac Dis 2016;8(Suppl 2):S121-9.