• Title/Summary/Keyword: Fluorescence measurement

Search Result 321, Processing Time 0.03 seconds

Measurement of Fluorescence Correlation Function by Using Size and Concentration of Fluorescence Particles (형광입자들의 크기와 농도에 따른 형광 상관 분광함수 측정)

  • Han, Yesul;Lee, Jaeran;Kim, Sok Won
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.3
    • /
    • pp.113-118
    • /
    • 2012
  • The concentration and hydrodynamic radius of nano-sized fluorescence particles diffusing in solution were compared by using fluorescence correlation spectroscopy (FCS), which can measure the variation of the correlation function of a fluorescence signal by size and number of particles. The used nano-sized fluorescence particles are Alex Fluor 647, quantum dots, and fluorescence beads, and three kinds of sample solutions with different concentrations were prepared by dilution to 1/10 and 1/100 with distilled water for each kind of particles. The effective focal volumes were calculated by using the known diffusion coefficient of Alexa Fluor 647 particles, and the diffusion time, number of particles in focal volume, and variation of concentration according to the dilution could be measured by the FCS system. Through this study, we determined that the concentrations of arbitrarily diluted sample solutions can be measured by a home-built FCS setup in the range of 0.1 nM ~ 10 nM and that the diffusion coefficient of the quantum dot was $27{\pm}1{\mu}m^2/s$.

Steady state and Lifetime Measurements of Primary Fluorescence from Phytoplanktons (식물플랑크톤 색소의 형광 특성과 lifetime 측정)

  • PARK Mi-Ok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.6
    • /
    • pp.397-404
    • /
    • 1991
  • The steady state and decay characteristics of primary fluorescenece of phytoplanktons including Cyanophyceae and Cryptophyceae were investigated in vivo. At 580-640 nm region, fluorescence emission spectra were obtained from all algae examined. The observed fluorescence emission maxima were similiar$(\pm3\;nm)$ except Synechocorcus sp. (SYN). Considered $\lambda_{max}$ of emission spectra of phycobiliproteins and the excitation spectra with $\lambda_{max}=540-560nm$, it seems to be originated from biliproteins. Fluorescence lifetimes $(\tau)$ and decay curves were compared with standard solution of candidate organic compounds, b-phycoerythrin. The $\tau$ values obtained for phytoplankton with $\lambda_{max}=580nm$ were different depending upon the species of algae. The observed $\tau$ values were ranged from 1.39 ns to 1.95 ns. These are considerably shorter than $\tau(3.23\;us)$ for standard solution of b-phycoerythrin. The reduction of $\tau$ for phycoerythrin in vivo seems to be originated from effective energy transfer system between Chl. a and phycobiliprotein in intact cell. There are subtantial differences in fluorsecence spectra and lifetimes at the class level. At the species level, differences seems to be much smaller. The result of experiment suggests that measurement of fluorescence lifetimes may be helpful in the rapid characterization of algae. Direct application will likely be found in combination with the measurement of other luminescence parameters.

  • PDF

Micro-LIF measurement of microchannel flow

  • Kim Kyung Chun;Yoon Sang Youl
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.65-74
    • /
    • 2004
  • Measurement of concentration distributions of suspended particles in a micro-channel is out of the most crucial necessities in the area of Lab-on-a-chip to be used for various bio-chemical applications. One most feasible way to measure the concentration field in the micro-channel is using micro-LIF(Laser Induced Fluorescence) method. However, an accurate concentration field at a given cross plane in a micro-channel has not been successfully achieved so far due to various limitations in the light illumination and fluorescence signal detection. The present study demonstrates a novel method to provide an ultra thin laser sheet beam having five(5) microns thickness by use of a micro focus laser line generator. The laser sheet beam illuminates an exact plane of concentration measurement field to increase the signal to noise ratio and considerably reduce the depth uncertainty. Nile Blue A was used as fluorescent dye for the present LIF measurement. The enhancement of the fluorescent intensity signals was performed by a solvent mixture of water $(95\%)$ and ethanol (EtOH)/methanol (MeOH) $(5\%)$ mixture. To reduce the rms errors resulted from the CCD electronic noise and other sources, an expansion of grid size was attempted from $1\times1\;to\;3\times3\;or\;5\times5$ pixel data windows and the pertinent signal-to-noise level has been noticeably increased accordingly.

  • PDF

Detecting Drought Stress in Soybean Plants Using Hyperspectral Fluorescence Imaging

  • Mo, Changyeun;Kim, Moon S.;Kim, Giyoung;Cheong, Eun Ju;Yang, Jinyoung;Lim, Jongguk
    • Journal of Biosystems Engineering
    • /
    • v.40 no.4
    • /
    • pp.335-344
    • /
    • 2015
  • Purpose: Soybean growth is adversely affected by environmental stresses such as drought, extreme temperatures, and nutrient deficiency. The objective of this study was to develop a method for rapid measurement of drought stress in soybean plants using a hyperspectral fluorescence imaging technique. Methods: Hyperspectral fluorescence images were obtained using UV-A light with 365 nm excitation. Two soybean cultivars under drought stress were analyzed. A partial least square regression (PLSR) model was used to predict drought stress in soybeans. Results: Partial least square (PLS) images were obtained for the two soybean cultivars using the results of the developed model during the period of drought stress treatment. Analysis of the PLS images showed that the accuracy of drought stress discrimination in the two cultivars was 0.973 for an 8-day treatment group and 0.969 for a 6-day treatment group. Conclusions: These results validate the use of hyperspectral fluorescence images for assessing drought stress in soybeans.

CO Two-photon Laser Induced Fluorescence Measurements in High Temperature and Pressure Conditions (고온고압 조건에서 Two-Photon LIF를 이용한 CO 측정에 관한 연구)

  • Oh, Seung-Mook;Kim, Duk-Sang;Miles, Paul C.;Colban, Will F.
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Carbon monoxide (CO) is not only an important intermediate species in chemical reaction mechanisms of hydrocarbon fuel combustion, but also a crucial pollutant species emitted from automotive engines. To better understand the physical processes impacting CO emissions, the development of laser-based measurement techniques that can visualize in-cylinder CO distributions is desirable. Among these techniques, Laser-Induced Fluorescence (LIF) is a sensitive and species-selective detection technique capable of good spatial resolution. However, some technical matters such as deep UV excitation, severe pressure dependency of the LIF signal, and potential interference from other species have been major challenges for CO LIF application. This study is focused on investigating the feasibility of CO two-photon LIF in a direct-injection diesel engine operating at typical pressure and temperature conditions with commercial grade diesel fuel. Spectroscopic analysis shows that the CO fluorescence signal can be separated from $C_2$ Swan band or broadband fluorescence from PAHs when the signal is collected near 483 nm. The signal-to-noise ratio of CO LIF deteriorate rapidly as pressure is increased, following $P^{-1.49}$ which matches the theoretical signal pressure dependency.

  • PDF

Fluorescence Enhancement of 7-Diethylamino-4-methylcoumarin by Noncovalent Dipolar Interactions with Cucurbiturils

  • Park, Mee Ock;Moon, Myung Gu;Kang, T.J.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1378-1382
    • /
    • 2013
  • We have investigated the complex forming behavior of cucurbit[6]urils(CB6) and cucurbit[7]urils(CB7) with 7-diethylamino-4-methylcoumarin(C460) in water. The electronic absorption maximum of C460 shows bathochromic shift with the addition of CB7 and fluorescence intensity is greatly increased, while CB6 has no noticeable effects on the spectroscopic properties of C460. It is noted that CB7 interacts more strongly with C460 than CB6 does. Fluorescence lifetime also significantly increased for the CB7 complex, which is attributed to reduced polarity surrounding C460 and/or C460 being in a restricted environment. The stoichiometry for the complex formation determined from the fluorescence titration measurement indicates that 2:1 complex in which two CB7 molecules bind to C460 is formed. Thus, two step equilibrium processes are suggested for the complex formation and the binding constants are estimated. The semi-empirical electronic structures calculations indicate that C460 is not included in the CB7 cavity but interacts noncovalently with the portal carbonyls of CB7.

Optical Absorption and Fluorescence of NADH Encapsulated Sol-Gel Silicate Gels

  • Hong, Hye-Jeong;Jiin Jung;Jeong, Ae-Young;Kim, Dong-Pyo;Bae, Byeong-Soo
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.359-363
    • /
    • 2000
  • Reduced nicotinamide adenine dinucleotide (NADH) was encapsulated in transparent porous sol-gel silicate gels using by different organoalkoxysilane precursor. Characteristics optical absorption and fluorescence of NADH in the gels were examined with depending on NADH concentration and compared. Optical absorption in the aminopropyltrimethoxysilane (APTMS) gel is highest and remains constant during aging the gel. Thus, it is found that NADH in the APTMS gel is most stable and activated. On the other hand, methyltriethoxysilane (MTES) gel presents the lowest optical absorption diminishing with aging the gel. Measurable increase of fluorescence with raising the NADH concentration is observed except for the APTMS gel due to its solubility in the buffer during fluorescence measurement.

  • PDF

Acetone PLIF for Fuel Distribution Measurements in Liquid Phase LPG Injection Engine (LPG 액상분사 엔진에서 아세톤 PLIF를 이용한 연료분포 측정기법 연구)

  • 오승묵;박승재;허환일;강건용;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.74-82
    • /
    • 2004
  • Planar laser-induced fluorescence(PLIF) has been widely used to obtain two dimensional fuel distribution. Acetone PLIF is chosen because fluorescence signal from acetone as a fluorescent tracer is less sensitive to oxygen quenching than other dopants. Acetone PLIF is applied to measure quantitative air excess ratio distribution in an engine fueled with LPG. Acetone is excited by KrF excimer laser (248nm) and its fluorescence image is acquired by ICCD camera with a cut-off filter to suppress Mie scattering from the laser light. For the purpose of quantifying PLIF signal, an image processing method including the correction of laser sheet beam profile is suggested. Raw images are divided by each intensity of laser energy and profile of laser sheet beam. Inhomogeneous fluorescence images scaled with the reference data, which is taken by a calibration process, are converted to air excess ratio distribution. This investigation shows instantaneous quantitative measurement of planar air excess ratio distribution for gaseous fuel.

Characterizing Fluorescence Properties of Dissolved Organic Matter for Water Quality Management of Rivers and Lakes (하천 및 호소 수질관리를 위한 용존 자연유기물질 형광특성 분석)

  • Hur, Jin;Shin, Jae-Ki;Park, Sung-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.940-948
    • /
    • 2006
  • Fluorescence measurements of dissolved organic matter(DOM) have the superior advantages over other analysis tools for applying to water quality management. They are simple and fast and require minimal pretreatment of samples. Fluorescence index($F_{450}/F_{500}$), synchronous spectra, and fluorescence excitation-emission matrices(EEM) of various DOM samples were investigated to discriminate autochthonous/allochthonous composition, protein-like fluorescence, fulvic-like fluorescence, humic-like fluorescence, terestrial humic-like fluorescence by comparing among the real DOM samples of different origins with the help of literature. The samples used included standard purified DOM, lake, river and wastewater treatment effluent. The relative distribution of various DOM composition was derived from the ratios of each fluorescence region. The results were very consistent with those expected from the sample properties. Allochthonous and terrestrial humic-like fluorescence were more prominent in the samples with abundant soil-derived DOM components. In addition, the protein-like fluorescence property was more pronounced in the samples where strong algal or microbial activities were expected. It was also shown that the ratio of protein-like/terrestrial humic-like fluorescence obtained from synchronous spectrum and fluorescence EEM could be used as an indicator for the evaluation of wastewater treatment on the downstream water quality of rivers and for the prediction of the degree of algal/microbial activities in lakes. It is expected that the results of this study will provide the basic information to develop the future water quality management techniques using DOM fluorescence measurements.

Measurement of Soot and PAH in the Diffusion Flame Using Laser Diagnostics (레이저 진단을 이용한 확산화염에서의 매연 및 PAH 의 측정기법)

  • Yoon Seung Suk;Lee Sang Min;Chung Suk Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.108-111
    • /
    • 2004
  • Laser induced incandescence and laser induced fluorescence techniques have been investigated to measure the concentrations of soot and PAH, respectively. The Nd:YAG and dye lasers were used to form a sheet beam, and its wavelength were modulated to obtain a optimized signals of soot and PAH. Results showed that the relative size groups of soot and PAH can be measured by using our laser techniques.

  • PDF