• 제목/요약/키워드: Fluorescence intensity

검색결과 575건 처리시간 0.034초

Use of Chlorophyll a Fluorescence Imaging for Photochemical Stress Assessment in Maize (Zea mays L.) Leaf under Hot Air Condition

  • Park, Jong Yong;Yoo, Sung Young;Kang, Hong Gyu;Kim, Tae Wan
    • 한국작물학회지
    • /
    • 제61권4호
    • /
    • pp.270-276
    • /
    • 2016
  • The objective of this study was to find a rapid determination of the hot air stress in maize (Zea mays L.) leaves using a portable chlorophyll fluorescence imaging instrument. To assess the photosynthetic activity of maize leaves, an imaging analysis of the photochemical responses of maize was performed with chlorophyll fluorescence camera. The observed chlorophyll imaging photos were numerically transformed to the photochemical parameters on the basis of chlorophyll a fluorescence. Chlorophyll a fluorescence imaging (CFI) method showed that a rapid decrease in maximum fluorescence intensity ($F_m$) of leaf occurred under hot air stress. Although no change was observed in the maximum quantum yield ($F_v/F_m$) of the hot air stressed maize leaves, the other photochemical parameters such as maximum fluorescence intensity ($F_m$) and Maximum fluorescence value ($F_p$) were relatively lowered after hot air stress. In hot air stressed maize leaves, an increase was observed in the nonphotoquenching (NPQ) and decrease in the effective quantum yield of photochemical energy conversion in photosystem II (${\Phi}PSII$). Thus, NPQ and ${\Phi}PSII$ were available to be determined non-destructively in maize leaves under hot air stress. Our results clearly indicated that the hot air could be a source of stress in maize leaves. Thus, the CFI analysis along with its related parameters can be used as a rapid indicating technique for the determining hot air stress in plants.

Comparison of Clinical Characteristics of Fluorescence in Quantitative Light-Induced Fluorescence Images according to the Maturation Level of Dental Plaque

  • Jung, Eun-Ha;Oh, Hye-Young
    • 치위생과학회지
    • /
    • 제21권4호
    • /
    • pp.219-226
    • /
    • 2021
  • Background: Proper detection and management of dental plaque are essential for individual oral health. We aimed to evaluate the maturation level of dental plaque using a two-tone disclosing agent and to compare it with the fluorescence of dental plaque on the quantitative light-induced fluorescence (QLF) image to obtain primary data for the development of a new dental plaque scoring system. Methods: Twenty-eight subjects who consented to participate after understanding the purpose of the study were screened. The images of the anterior teeth were obtained using the QLF device. Subsequently, dental plaque was stained with a two-tone disclosing solution and a photograph was obtained with a digital single-lens reflex (DSLR) camera. The staining scores were assigned as follows: 0 for no staining, 1 for pink staining, and 2 for blue staining. The marked points on the DSLR images were selected for RGB color analysis. The relationship between dental plaque maturation and the red/green (R/G) ratio was evaluated using Spearman's rank correlation. Additionally, different red fluorescence values according to dental plaque accumulation were assessed using one-way analysis of variance followed by Scheffe's post-hoc test to identify statistically significant differences between the groups. Results: A comparison of the intensity of red fluorescence according to the maturation of the two-tone stained dental plaque confirmed that R/G ratio was higher in the QLF images with dental plaque maturation (p<0.001). Correlation analysis between the stained dental plaque and the red fluorescence intensity in the QLF image confirmed an excellent positive correlation (p<0.001). Conclusion: A new plaque scoring system can be developed based on the results of the present study. In addition, these study results may also help in dental plaque management in the clinical setting.

Photoinhibition Induced Alterations in Energy Transfer Process in Phycobilisomes of PS II in the Cyanobacterium, Spirulina platensis

  • Kumar, Duvvuri Prasanna;Murthy, Sistla D.S.
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.644-648
    • /
    • 2007
  • Exposure of algae or plants to irradiance from above the light saturation point of photosynthesis is known as high light stress. This high light stress induces various responses including photoinhibition of the photosynthetic apparatus. The degree of photoinhibition could be clearly determined by measuring the parameters such as absorption and fluorescence of chromoproteins. In cyanobacteria and red algae, most of the photosystem (PS) II associated light harvesting is performed by a membrane attached complex called the phycobilisome (PBS). The effects of high intensity light (1000-4000 ${\mu}mol$ photons $m^{-2}s^{-1}$) on excitation energy transfer from PBSs to PS II in a cyanobacterium Spirulina platensis were studied by measuring room temperature PC fluorescence emission spectra. High light (3000 ${\mu}mol$ photons $m^{-2}s^{-1}$) stress had a significant effect on PC fluorescence emission spectra. On the other hand, light stress induced an increase in the ratio of PC fluorescence intensity of PBS indicating that light stress inhibits excitation energy transfer from PBS to PS II. The high light treatment to 3000 ${\mu}mol$ photons $m^{-2}s^{-1}$ caused disappearance of 31.5 kDa linker polypeptide which is known to link PC discs together. In addition we observed the similar decrease in the other polypeptide contents. Our data concludes that the Spirulina cells upon light treatment causes alterations in the phycobiliproteins (PBPs) and affects the energy transfer process within the PBSs.

Acridine Fluorescence Behaviors in Different Polymeric Microenvironments Directed by C2-Proton-Acidity of Imidazolium-Based Ionic Liquids

  • Ji, Myoung-Jin;Kim, Jong-Gyu;Shin, Ueon-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2489-2493
    • /
    • 2012
  • A new fluorescent system (acridine/RTIL hybrid gel) confined in the 3D micro-structure of a poly(lactic acid) membrane were prepared from 1-butyl-3-methylimidazolium-based ionic liquids ([bmim]X (X = $SbF_6$, $NTf_2$, Cl); RTILs), poly(lactic acid) (PLA), and acridine via the sol-gel route. SEM images showed that, in the presence of [bmim]$SbF_6$ and [bmim]$NTf_2$, 3D-ly paticulated structures were created inside the PLA membranes and acridine/RTIL hybrid gels were confined in gabs of particulates. However, the use of [bmim]Cl induced the formation of a 3D-ly porous structure containing the hybrid gel of acridine/[bmimCl in the micropores. The three fluorescent systems exhibited different fluorescence behaviors (fluorescence maximum and intensity) depending on the C2-H acidity scale of the RTILs (or their anion type). Acridine gels hybridized with [bmim]$SbF_6$ and [bmim]$NTf_2$ showed blue fluorescence with relative high intensity, whereas the hybrid gel with [bmim]Cl exhibited almost no fluorescence under dry conditions. However, the acridine/[bmim]Cl hybrid system in the micro-porous PLA membrane started to emit fluorescent light under humid conditions and showed a possible response, indicating that it could be applied as a humidity sensor.

아열대성 식물 4종의 엽록소형광과 항산화효소 활성의 일주기적 변화 (Diurnal Changes of Chlorophyll Fluorescence and Antioxidative Enzyme Activity of the Leaves from Four Subtropical Plants)

  • 오순자;고창효;고석찬
    • 한국환경과학회지
    • /
    • 제16권5호
    • /
    • pp.633-640
    • /
    • 2007
  • The diurnal changes of chlorophyll fluorescence and antioxidative enzyme activity were investigated in the leaves from four subtropical plant species (Crinum asiaticum var. japonicum Bak., Osmanthus insularis Koidz., Asplenium antiquum Makino and Chloranthus glaber Makino) under the natural habitats in summer and winter. The intensity of chlorophyll fluorescence was lower in O-, I-, J-, P-steps of O-J-I-P transient in winter than summer, and prominent diurnal change was not found in the fluorescence intensity of four subtropical plant species in winter. The activity and isoenzyme pattern of SOD and catalase did irregularly change seasonally and diurnally in four subtropical plant species. In contrast, the peroxidase activity and isoenzyme pattern was different depending on plant species and growth seasons; The activity increased slightly more in winter than in summer in four subtropical plant species, and several isoenzymes appeared in the leaves from C. asiaticum var japonicum, O. insularis and A. antiquum in winter.

Development Behavior of Vaporizing Sprays from a High-Pressure Swirl Injector Using Exciplex Fluorescence Method

  • Choi, Dong-Seok;Kim, Duck-Jool;Hwang, Soon-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제14권10호
    • /
    • pp.1143-1150
    • /
    • 2000
  • The effects of ambient conditions on vaporizing sprays from a high-pressure swirl injector were investigated by an exciplex fluorescence method. Dopants used were 2% fluorobenzene and 9% DEMA (diethyl-methyl-amine) in 89% solution of hexane by volume. In order to examine the behavior of liquid and vapor phases inside of vaporizing sprays, ambient temperatures and pressures similar to engine atmospheres were set. It was found that the ambient pressure had a significant effect on the axial growth of spray, while ambient temperature had a great influence on the radial growth. The spatial distribution of vapor phase at temperatures above 473K became wider than that of liquid phase after half of injection duration. From the analysis of the area ratio for each phase, the middle part (region II) in the divided region was the region which liquid and vapor phases intersect. For liquid phase, fluorescence-intensity ratio was greatly changed at lms after the start of injection. However, the ratio of vapor phase was nearly uniform in each divided region throughout the injection.

  • PDF

Green Fluorescent Protein(GFP)의 Fluorescence-Activated Cell Sorter(FACS) 분석을 통한 유전자 이입의 최적화 (Optimization of Gene Transfection Using Fluorescence-Activated Cell Sorter(FACS) Analysis of Green Fluorescent Protein(GFP))

  • 김태경;박민태;이균민
    • KSBB Journal
    • /
    • 제14권3호
    • /
    • pp.377-379
    • /
    • 1999
  • CHO/dhfr- 세포에 대해 LipofectAmine$^{TM}$을 이용한 유전자 이입 효율을 증가시키기 위하여 지질과 DNA의 최적 농도를 구하였다. Reporter 유전자로서 GFP 유전자를 이용하였으며, 여러 농도의 지질 DNA로 유전자 이입된 각 세포군에서 나타나는 green fluorescence intensity를 FACS 분석함으로써 유전자 이입 효율을 정량화 할 수 있었다. 그 결과 24-well plate에서 $2.0{\mu}L$LipofectAmine$^{TM}$$0.4{\mu}g$ DNA를 조합하여 사용했을 때 최적의 유전자 이입 효율이 나타남을 알 수 있었다. 또한, GFP는 유전자 이입 최적화를 수행하는 데에 여러가지 면에서 유용한 수단이 될 수 있음을 확인할 수 있었다.

  • PDF

LIF 공초점 현미경을 이용한 Y-채널 마이크로믹서의 혼합 효율 평가 (Mixing Efficiency Evaluation in Y-channel Micromixer Using LIF Confocal Microscope)

  • 김경목;신용수;안유민;이도형
    • 대한기계학회논문집B
    • /
    • 제31권2호
    • /
    • pp.159-166
    • /
    • 2007
  • Mixing between two or more reagents is one of important processes in biochemical microfluidics. In efficient micromixer design, it is essential to analyze flow pattern and evaluate mixing efficiency with good precision. In this work, mixing efficiency for Y-channel micromixer is measured by fluorescence intensity using LIF(Laser Induced Fluorescence) Confocal Microscope. The Y-channel micromixers are fabricated with polydimethylsiloxane(PDMS) and those are bonded to glass plate through Plasma bonding. Nile Blue A is injected into the micromixer as a fluorescence dye for measuring of fluorescence intensity by He/Ne laser. For visualization of the flow pattern, dynamic image capturing is carried out using CAM scope. For the comparison with computer simulation, modified SIMPLE algorithm for incompressible flow equation is solved for the same geometry as in the experiment. Throughout the experiments and computer simulation, accurate mixing efficiency evaluation process for a PDMS Y-channel micromixer is established.

차등 3차원 형광 여기-방출 매트릭스를 이용한 다양한 기원의 용존 유기물질 트리할로메탄 생성능 예측 (Prediction of Trihalomethanes Formation Potential of Dissolved Organic Matter with Various Sources Using Differential Fluorescence 3D-Excitation-Emission Matrix (EEM))

  • 배경록;허진
    • 한국물환경학회지
    • /
    • 제38권2호
    • /
    • pp.63-71
    • /
    • 2022
  • This study aimed to maximize the potential of fluorescence 3D excitation-emission matrix (EEM) for predicting the trihalomethane formation potential (THMFP) of DOM with various sources. Fluorescence spectroscopy is a useful tool for characterizing dissolved organic matter (DOM). In this study, differential spectroscopy was applied to EEM for the prediction of THMFP, in which the difference between the EEM before and after chlorination was taken into account to obtain the differential EEM (DEEM). For characterization of the original EEM or the DEEM, the maximum intensities of several different fluorescence regions in EEM, fluorescence EEM regional integration (FRI), and humification index (HIX) were calculated and used for the surrogates for THMFP prediction. After chlorination, the fluorescence intensity decreased by 77% to 93%. In leaf-derived and effluent DOM, there was a significant decrease in the protein-like peak, while a more pronounced decrease was observed in the humic-like peak of river DOM. In general, leaf-derived and effluent DOM exhibited a relatively lower THMFP than the river DOM. Our results were consistent with the high correlations between humic-like fluorescence and THMFP previously reported. In this study, HIX (r= 0.815, p<0.001), FRI region V (r=0.727, p<0.001), humic-like peak (r= 0.827, p<0.001) from DEEM presented very high correlations with THMF P. When the humic-like peak intensity was converted to a logarithmic scale, a higher correlation was obtained (r= 0.928, p<0.001). This finding suggests that the humic-like peak in DEEM can serve as a universal predictor for THM formation of DOM with various origins.

Fluorescein 형광의 pH 의존성을 이용한 lipase 활성 측정방법 (Assay of Lipase Activity by the pH-Dependent Fluorescence Change of Fluorescein)

  • 박종원;최석정
    • 생명과학회지
    • /
    • 제18권8호
    • /
    • pp.1159-1163
    • /
    • 2008
  • 이 연구의 목적은 물-오일 계면에서 특이적인 lipase 활성을 측정할 수 있는 high-throughput assay 방법을 확립하는 것이다. 이 방법은 pH에 따라 형광의 세기가 변하는 fluorescein의 특성을 이용하여 lipase의 작용으로 방출되는 지방산으로 인한 pH 변화를 fluorescein의 형광 변화로 측정하도록 되어 있다. 활성의 측정은 오일 에멀션과 fluorescein 그리고 효소를 포함하는 반응 용액을 반응시키면서 일정한 간격으로 형광을 측정함으로써 이루어진다. 이 방법을 통해 형광의 세기가 효소의 양에 비례하는 속도로 감소하는 것을 관찰할 수 있었으며 시간에 따른 형광 변화 그래프로부터 계산한 반응 속도가 효소의 양에 선형으로 비례한다는 것을 확인할 수 있었다. 또 한 가지 중요한 사실은 assay를 하는데 있어서 pH 6.0-8.0의 범위에서 다른 pH 조건을 사용할 수 있었다는 점이다.