• Title/Summary/Keyword: Fluorescence effect

Search Result 799, Processing Time 0.033 seconds

Study of Optimal Conditions Affecting the Photothermal Effect and Fluorescence Characteristics of Indocyanine Green

  • Seo, Sung Hoon;Bae, Min Gyu;Park, Hyeong Ju;Ahn, Jae Sung;Lee, Joong Wook
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.554-561
    • /
    • 2021
  • Indocyanine green (ICG) is a cyanine dye that has been used in medical diagnostics based on fluorescence imaging, and in medical therapy based on the photothermal effect. It is important to systematically understand the photothermal effect and fluorescence characteristics of ICG simultaneously. By varying a number of conditions such as laser power density, laser irradiation wavelength, concentration of ICG solution, and exposure time of laser irradiation, the intensity properties of fluorescence and the temperature change induced by the photothermal effect are measured simultaneously using a charge-coupled-device camera and a thermal-imaging camera. The optimal conditions for maximizing the photothermal effect are determined, while maintaining a relatively long lifetime and high efficiency of the fluorescence for fluorescence imaging. When the concentration of ICG is approximately 50 ㎍/ml and the laser power density exceeds 1.5 W/cm2, the fluorescence lifetime is the longest and the temperature induced by the photothermal effect rapidly increases, exceeding the critical temperature sufficient to damage human cells and tissues. The findings provide useful insight into the realization of effective photothermal therapy, while also specifying the site to be treated and enabling real-time treatment monitoring.

An Apparatus for Monitoring Real-time Uranium Concentration Using Fluorescence Intensity at Time Zero

  • Lee, Sang-Mock;Shin, Jang-Soo;Kang, Shin-Won
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.166-174
    • /
    • 2001
  • An apparatus for detecting remote real-time uranium concentration using an optrode was developed. An optrode to detect uranium fluorescence as remote real-time control was designed. Fluorescence intensity at time 2ero was derived by the fluorescence signal processing and the algorithm to exclude the quenching effect of various quenchers and temperature fluctuations. This apparatus employing the above deriving method and the optrode has an error range within 6% in spite of serious fluorescence lifetime changes due to the quenching effect and temperature fluctuations. The detection limit is 0.06 ppm and the linearity is excellent between 0.06 ppm and 2 ppm on the aqueous uranium solution.

  • PDF

The Effect of Cure History on the Fluorescence Behavior of an Unsaturated Polyester Resin with A Fluorescence Probe

  • Donghwan Cho;Yun, Suk-Hyang;Bang, Dae-Suk;Park, Il-Hyun
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.282-289
    • /
    • 2004
  • We have extensively characterized the fluorescence behavior of unsaturated polyester (UP) resin in the absence and presence of a 1,3-bis-(l-pyrenyl)propane (BPP) fluorescent probe at various dynamic and isothermal cure histories by means of a steady-state fluorescence technique using a front-face illumination equipment. In addition, we explored the effect of the fluorescence intensity on the relaxation of the fluorescent probe in the UP resin by resting the dynamically and isothermally cured resin at ambient temperature and pressure for 24 h. The monomer fluorescence intensity, which has two characteristic peaks at 376 and 396nm, changed noticeably depending on the cure temperature and time and provided important information with respect to the molecular and photophysical responses upon curing. The result of the fluorescence study indicates that the increased local viscosity and restricted molecular mobility of the UP resin surrounding the BPP probe after curing are both responsible for the enhancement of the monomer fluorescence intensity. Our results also demonstrate that once the BPP probe has enough time to rearrange and become isolated prior to fluorescence, a sufficient amount of fluorescence is emitted. Therefore, we note that the fluorescence behavior of this UP resin system is influenced strongly by the relaxation process of the fluorescent probe in the resin as well as process used to cure the resin.

Fluorescence Intensity Changes for Anthrylazacrown Ethers by Paramagnetic Metal Cations

  • 장정호;김해중;박중희;신영국;정용석
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.7
    • /
    • pp.796-800
    • /
    • 1999
  • Three anthrylazacrown ethers in which the anthracene fluorophore π system is separated from the electron donor atoms by one methylene group were synthesized, and their photophysical study was accomplished. These fluorescent compounds showed a maximum fluorescence intensity at pH=5 in aqueous solutions and a decrease in fluorescence intensity upon binding of paramagnetic metal cations (Mn 2+ (d 5 ), Co 2+ (d 7 ), Cu 2+ (d 9 )). The decrease in fluorescence intensity may be attributed to the paramagnetic effect of metal cations to deactivate the excited state by the nonradiative quenching process. The benzylic nitrogen was found to play an important role in changing fluorescence intensity. From the observed linear Stern-Volmer plot and the fluorescence lifetime independence of the presence of metal ions, it was inferred that the chelation enhanced fluorescence quenching (CHEQ) mechanism in the system is a ground state static quenching process. Enhanced fluorescence was also observed when an excess Na + ion was added to the quenched aqueous solution, and it was attributed to cation displacement of a complexed fluorescence quencher.

Effect of Thermal Imidization and Curing on Fluorescence Behavior of a Phenylethynyl-Terminated Poly(amic acid)

  • Cho, Donghwan;Yang, Gyeongmo;Drzal, Lawrence T.
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.297-302
    • /
    • 2003
  • The imidization and cure reaction of a thermosetting phenylethynyl-terminated amic acid (LaRC PETI-5) in film form have been monitored as a function of temperature by means of a steady-state fluorescence technique using a front-face illumination method. The variation of the fluorescence emission spectra of LaRC PETI-5 can be divided into four temperature regions; Region I: below 15$0^{\circ}C$, Region II: 150-25$0^{\circ}C$, Region III: 250-35$0^{\circ}C$, and Region IV: above 35$0^{\circ}C$. The fluorescence spectra in Region I are largely influenced by residual N-methyl-2pyrrolidinone in the polymer and also slightly by partial imidization of the polymer. There is a combined effect of imidization and solvent removal on the fluorescence behavior in Region II. The spectra in Regions III and IV are due significantly to the cure reaction of LaRC PETI-5 and to a post-cure effect of the polyimide, respectively. This spectroscopic evidence indicating the transformation of the amic acid imide oligomer into the corresponding polyimide via imidization and cure, agrees well with thermal analysis results obtained previously. The intermediate stage of cure in the range of 250-30$0^{\circ}C$ predominantly influences the change of the fluorescence intensity. The later stage above 30$0^{\circ}C$ significantly influences the position of the spectrum. This fluorescence study also supports the mechanism proposed in earlier work that the crosslinking reaction takes place at the reaction sites in the conjugated polyene and the phenylethynyl end group in the polyimide chain.

Effect of Frozen Storage, Cooking Methods and Reheating on Lipid Oxidation in Chicken Meat (냉동저장, 조리법, 재가열이 대고기의 지질 산패에 미치는 영향)

  • 장선미;김영순
    • The Korean Journal of Food And Nutrition
    • /
    • v.8 no.2
    • /
    • pp.93-104
    • /
    • 1995
  • Effect of frozen storage(0, 15, 30, 40 days, -18$^{\circ}C$), cooking methods(frying, microwaving) and reheating on lipid oxidation in chicken meats were evaluated by measuring thiobarbituric acid value (TBA value) and by measuring fluorescence value. TBA values were increased by storage days and were higher in leg meats than breast meats. According to cooking method, TBA values were higher in frying chicken meats. The fluorescence values were also increased by storage days and were higher in breast meats than leg meats.

  • PDF

Substituent Effect on Fluorescence and Photoisomerization of 1-(9-Anthryl)-2-(4-Pyridyl)ethenes

  • Shin, Eun-Ju;Lee, Sang-Ha
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.9
    • /
    • pp.1309-1338
    • /
    • 2002
  • The fluorescence and photoisomerization quantum yields of trans-1-(9-anthryl)-2-(4-pyridyl)ethene (t-4-APyE), 1-(10-methyl-9-anthryl)-2-(4-pyridyl)ethene (t-4-MeAPyE), and 1-(10-chloro-9-anthryl)-2-(4- pyridyl)ethene (t-4-ClAPyE) were measured in cyclohexane, acetonitrile, and methanol at room temperature.Polar solvents result in the drastic reduction of fluorescence quantum yield and increase of photoisomerization quantum yield for all three compounds. These results are probably due to the stabilization of intramolecular charge transfer (ICT) excited state in polar solvent. The higher contribution of ICT in the presence of more electron-donating methyl substituent, manifested by largest positive fluorescence solvatochromism, indicates that the pyridine ring acts as an electron acceptor. Protonation or methylation makes pyridine ring stronger electron acceptor and causes long-wavelength ground state charge transfer absorption band and complete quenching of fluorescence. The fluorescence from t-4-APyE derivatives can be switched off responding external stimuli viz. medium polarity, protonation, or methylation.

Quantitative Vapor Phase Exciplex Fluorescence Measurements at High Ambient Temperature and Pressure

  • Kim, Tongwoo;Jaal B. Ghandhi
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.157-167
    • /
    • 2003
  • The exciplex fluorescence technique with the TMPD (tetamethyl-Ρ-phenylene-diamine) / naphthalene dopant system was applied in a combustion-type constant-volume spray chamber. A detailed set of calibration experiments has been performed in order to quantify the TMPD fluorescence signal. It has been demonstrated that the TMPD fluorescence intensity was directly proportional to concentration, was independent of the chamber pressure, and was not sensitive to quenching by either water vapor or carbon dioxide. Using a dual heated-jet experiment, the temperature dependence of TMPD fluorescence up to 1000 K was measured. The temperature field in the spray images was determined using a simple mixing model, and an iterative solution method was used to determine the concentration and temperature field including the additional effects of the laser sheet extinction. The integrated fuel vapor concentration compared favorably with the measured amount of injected fuel when all of the liquid fuel had evaporated.

Enhancement of Photovoltaic Performance of Fluorescence Materials added TiO2 electrode in Dye-sensitized Solar Cells (형광물질을 이용한 염료감응태양전지의 효율향상)

  • Cheon, JongHun;Lee, JeongGwan;Jung, MiRan;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.88.2-88.2
    • /
    • 2010
  • Dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies and low cost processes compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photo excited dyes into the conduction band of the semiconductor electrode. The oxidized dye is reduced by the hole injection into either the hole conductor or the electrolyte. Thus, the light harvesting effect of dye plays an important role in capturing the photons and generating the electron/hole pair, as well as transferring them to the interface of the semiconductor and the electrolyte, respectively. We used the organic fluorescence materials which can absorb short wavelength light and emit longer wavelength region where dye sensitize effectively. In this work, the DSSCs were fabricated with fluorescence materials added $TiO_2$ photo-electrode which were sensitized with metal-free organic dyes. The photovoltaic performances of fluorescence aided DSSCs were compared, and the recombination dark current curves and the incident photon-to-current (IPCE) efficiencies were measured in order to characterize the effects of the additional light harvesting effect in DSSC. Electro-optical measurements were also used to optimize the fluorescence material contents on TiO2 photo-electrode surface for higher conversion efficiency (${\eta}$), fill factor (FF), open-circuit voltage (VOC) and short-circuit current (ISC). The enhanced light harvesting effect by the judicious choice/design of the fluorescence materials and sensitizing dyes permits the enhancement of photovoltaic performance of DSSC.

  • PDF