• Title/Summary/Keyword: Fluorescence correlation spectroscopy

Search Result 33, Processing Time 0.019 seconds

Haematococcus pluvialis Cell-Mass Sensing Using Ultraviolet Fluorescence Spectroscopy

  • Lababpour, Abdolmajid;Hong, Seong-Joo;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.1922-1929
    • /
    • 2007
  • A simple whole-cell-based sensing system is proposed for determining the cell mass of H. pluvialis using ultraviolet fluorescence spectroscopy. An emission signal at 368 nm was used to detect the various kinds of green, green-brown, brown-red, and red H. pluvialis cells. The fluorescence emission intensities of the cells were highest at 368 nm with an excitation wavelength of 227 nm. An excitation wavelength of 227 nm was then selected for cell-mass sensing, as the emission fluorescence intensities of the cell suspensions were highest at this wavelength after subtracting the background interference. The emission fluorescence intensities of HPLC-grade water, filtered water, and HPLC-grade water containing a modified Bold's basal medium (MBBM) were measured and the difference was less than 1.6 for the selected wavelengths. Moreover, there was no difference in the emission intensity at 368 nm among suspensions of the various morphological states of the cells. A calibration curve of the fluorescence emission intensities. and cell mass was obtained with a high correlation ($R^2=0.9938$) for the various morphological forms of H. pluvialis. Accordingly, the proposed method showed no significant dependency on the various morphological cell forms, making it applicable for cell-mass measurement. A high correlation was found between the fluorescence emission intensities and the dry cell weight with a mixture of green, green-brown, brown-red, and red cells. In conclusion, the proposed model can be directly used for cell-mass sensing without any pretreatment and has potential use as a noninvasive method for the online determination of algal biomass.

Chicken Disease Characterization by Fluorescence Spectroscopy

  • Kang S.;Kim M. S.;Kim I.
    • Agricultural and Biosystems Engineering
    • /
    • v.5 no.1
    • /
    • pp.25-29
    • /
    • 2004
  • Fluorescence spectroscopy was used to characterize chicken carcass diseases. Spectral signatures of three different disease categories of poultry carcasses (airsacculitis, cadaver and septicemia) were obtained from fluorescence emission measurements in the wavelength range of 360 to 600 nm with 330 nm excitation. Principal Component Analysis (PCA) was used to select the most significant wavelengths for the classification of poultry carcasses. These wavelengths were analyzed for pathologic correlation of poultry diseases. Using a Soft Independent Modeling of Class Analogy (SIMCA) of principal components with a Mahalanobis distance metric, poultry carcasses were individually classified into different classes with $97.9\%$ accuracy.

  • PDF

Characterization of the Surface Contribution to Fluorescence Correlation Spectroscopy Measurements

  • Chowdhury, Salina A.;Lim, Man-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.583-589
    • /
    • 2011
  • Fluorescence correlation spectroscopy (FCS) is a sophisticated and an accurate analytical technique used to study the diffusion of molecules in a solution at the single-molecule level. FCS is strongly affected by many factors such as the stability of the excitation power, photochemical processes, mismatch between the refractive indices, and variations in the cover glass thickness. We have studied FCS near the surface of a cover glass by using rhodamine 123 as a fluorescent probe and have observed that the surface has a strong influence on the measurements. The temporal autocorrelation of FCS decays with two characteristic times when the confocal detection volume is positioned near the surface of the cover glass. As the position of the detection volume is moved away from the surface, the FCS autocorrelation becomes one-component decaying; the characteristic time of the decay is the same as the faster-decaying component in the FCS autocorrelation near the surface. This observation suggests that the faster component can be attributed to the free diffusion of the probe molecules in the solution, while the slow component has its origin from the interaction between the probe molecules and the surface. We have characterized the surface contribution to the FCS measurements near the surface by changing the position of the detection volume relative to the surface. The influence of the surface on the diffusion of the probe molecules was monitored by changing the chemical properties of the surface. The surface contribution to the temporal autocorrelation of the FCS strongly depends on the chemical nature of the surface. The hydrophobicity of the surface is a major factor determining the surface influence on the free diffusion of the probe molecules near the surface.

Diffusion-based determination of protein homodimerization on reconstituted membrane surfaces

  • Jepson, Tyler A.;Chung, Jean K.
    • BMB Reports
    • /
    • v.54 no.3
    • /
    • pp.157-163
    • /
    • 2021
  • The transient interactions between cellular components, particularly on membrane surfaces, are critical in the proper function of many biochemical reactions. For example, many signaling pathways involve dimerization, oligomerization, or other types of clustering of signaling proteins as a key step in the signaling cascade. However, it is often experimentally challenging to directly observe and characterize the molecular mechanisms such interactions-the greatest difficulty lies in the fact that living cells have an unknown number of background processes that may or may not participate in the molecular process of interest, and as a consequence, it is usually impossible to definitively correlate an observation to a well-defined cellular mechanism. One of the experimental methods that can quantitatively capture these interactions is through membrane reconstitution, whereby a lipid bilayer is fabricated to mimic the membrane environment, and the biological components of interest are systematically introduced, without unknown background processes. This configuration allows the extensive use of fluorescence techniques, particularly fluorescence fluctuation spectroscopy and single-molecule fluorescence microscopy. In this review, we describe how the equilibrium diffusion of two proteins, K-Ras4B and the PH domain of Bruton's tyrosine kinase (Btk), on fluid lipid membranes can be used to determine the kinetics of homodimerization reactions.

Prediction of Trihalomethanes Formation Potential of Dissolved Organic Matter with Various Sources Using Differential Fluorescence 3D-Excitation-Emission Matrix (EEM) (차등 3차원 형광 여기-방출 매트릭스를 이용한 다양한 기원의 용존 유기물질 트리할로메탄 생성능 예측)

  • Bae, Kyung Rok;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.63-71
    • /
    • 2022
  • This study aimed to maximize the potential of fluorescence 3D excitation-emission matrix (EEM) for predicting the trihalomethane formation potential (THMFP) of DOM with various sources. Fluorescence spectroscopy is a useful tool for characterizing dissolved organic matter (DOM). In this study, differential spectroscopy was applied to EEM for the prediction of THMFP, in which the difference between the EEM before and after chlorination was taken into account to obtain the differential EEM (DEEM). For characterization of the original EEM or the DEEM, the maximum intensities of several different fluorescence regions in EEM, fluorescence EEM regional integration (FRI), and humification index (HIX) were calculated and used for the surrogates for THMFP prediction. After chlorination, the fluorescence intensity decreased by 77% to 93%. In leaf-derived and effluent DOM, there was a significant decrease in the protein-like peak, while a more pronounced decrease was observed in the humic-like peak of river DOM. In general, leaf-derived and effluent DOM exhibited a relatively lower THMFP than the river DOM. Our results were consistent with the high correlations between humic-like fluorescence and THMFP previously reported. In this study, HIX (r= 0.815, p<0.001), FRI region V (r=0.727, p<0.001), humic-like peak (r= 0.827, p<0.001) from DEEM presented very high correlations with THMF P. When the humic-like peak intensity was converted to a logarithmic scale, a higher correlation was obtained (r= 0.928, p<0.001). This finding suggests that the humic-like peak in DEEM can serve as a universal predictor for THM formation of DOM with various origins.

Monitoring of Water Quality Parameters using Spectroscopic Characteristics of River Water - Ulsan Area (하천 분광특성을 이용한 수질항목 모니터링 연구 - 울산 지역)

  • Hur, Jin;Kim, Mi-Kyung;Shin, Jae-Ki
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.863-871
    • /
    • 2007
  • Spectroscopic characteristics of river water from four major watersheds in the Ulsan area were measured to examine their potential for estimating water quality parameters. The total 176 river samples were collected from 44 sites of small streams within the watersheds during the year 2006. Spectroscopic characteristics investigated included protein-like fluorescence (FLF) intensity, fulvic-like fluorescence (FLF) intensity, terrestrial humic-like fluorescence (TLF) intensity, UV absorbance at 254 nm, and UV absorbance difference at 220 nm and 254 nm. Protein-like fluorescence intensity showed linear relationships with biochemical oxygen demand (BOD), chemical oxygen demand (COD), total phosphorous (TP) concentrations of the samples with the correlation of 0.784, 0.779, and 0.733, respectively. Due to the UV absorption characteristics of nitrate at 220 nm, UV absorbance difference at 220 nm and 254 nm was selected to represent total nitrogen (TN) concentration. Exclusion of some samples with PLF intensity higher than 5.0 improved the correlation between the UV absorbance difference and TN as demonstrated by the increase of the correlation coefficient from 0.392 to 0.784. Instead, for the samples with PLF intensity lower than 5.0, the highest correlation of TN was achieved with UV absorbance at 254 nm. The results suggest that PLF intensity could be used as the estimation index for BOD, COD, and TP concentration of river water, and as the primary screening index for the prediction of TN using UV absorbance difference. Some BOD-based water quality levels among the river water were statistically discriminated by the PLF intensity. Low p-values were obtained from the t-tests on the samples with the first level and the second level (p=0.0003) and the samples with the second and the third levels (p=0.0413). Our combined results demonstrated that the selected spectroscopic characteristics of river water could be utilized as a tool for on-site real-time monitoring and/or the primary estimation of water quality.

Heterogeneous interaction network of yeast prions and remodeling factors detected in live cells

  • Pack, Chan-Gi;Inoue, Yuji;Higurashi, Takashi;Kawai-Noma, Shigeko;Hayashi, Daigo;Craig, Elizabeth;Taguchi, Hideki
    • BMB Reports
    • /
    • v.50 no.9
    • /
    • pp.478-483
    • /
    • 2017
  • Budding yeast has dozens of prions, which are mutually dependent on each other for the de novo prion formation. In addition to the interactions among prions, transmissions of prions are strictly dependent on two chaperone systems: the Hsp104 and the Hsp70/Hsp40 (J-protein) systems, both of which cooperatively remodel the prion aggregates to ensure the multiplication of prion entities. Since it has been postulated that prions and the remodeling factors constitute complex networks in cells, a quantitative approach to describe the interactions in live cells would be required. Here, the researchers applied dual-color fluorescence cross-correlation spectroscopy to investigate the molecular network of interaction in single live cells. The findings demonstrate that yeast prions and remodeling factors constitute a network through heterogeneous protein-protein interactions.

Predictation of the Concentrations and Distributions of Refractory Organic Matters in Wastewater using Spectroscopic Characteristics (분광특성을 이용한 하·폐수시료 내 난분해성 유기물 농도 및 분포 예측)

  • Lee, Bomi;Park, Min-Hye;Lee, Tae-Hwan;Hur, Jin;Yang, Heejung
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.560-567
    • /
    • 2009
  • Treated or untreated wastewater may be a major source of refractory organic matters (R-OM) in drinking water sources. For this study, spectroscopic characteristics of wastewater OM were investigated using the samples from 20 wastewater treatment plants, which are located at the upstream of the lake Paldang, to suggest a estimate index for R-OM in wastewater. R-OM was quantified by measuring total organic carbon (TOC) concentration of the wastewater samples remaining after 28-day dark incubation. Among the traditional OM indices such as chemical oxygen demand (COD) and initial TOC, CODMn showed the lowest correlation coefficients with R-TOC of the samples. The ratios of carbonaceous biochemical oxygen demand (CBOD) to $COD_{Cr}$ had a better correlation with the percent distribution of R-OM than $BOD/COD_{Cr}$ ratios. terrestrial humic-like fluorescence (THLF) exhibited the highest correlation coefficient with R-TOC among the indices obtained from the synchronous fluorescence spectra of the samples. Milori index, one of the humification indices, showed a good correlation with the percent distribution of wastewater. This study demonstrated that fluorescence properties might be a better indices to estimate the concentrations and the distributions of wastewater OM compared to the specific UV absorbance (SUVA) values. Some useful formulas based on OM spectroscopic characteristics were finally suggested to predict R-OM in wastewater.

Dynamics of Supercoiled and Relaxed pTZ18U Plasmids Probed with a Long-Lifetime Metal-Ligand Complex

  • Kang, Jung-Sook;Abugo, Omoefe O.;Lakowicz, Joseph R.
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.389-394
    • /
    • 2002
  • $[Ru(bpy)_2(dppz)]^2+$ (bpy=2,2'-bipyfidine, dppz=dipyrido[3,2-a:2',3'-c]phenazine) (RuBD), a long-lifetime metal-ligand complex, displays favorable photophysical properties. These include long lifetime, polarized emission, but no significant fluorescence from the complex that is not bound to DNA. To show the usefulness of this luminophore (RuBD) for probing the bending and torsional dynamics of nucleic acids, its intensity and anisotropy decays when intercalated into supercoiled and relaxed pTZ18U plasmids were examined using frequency-domain fluorometry with a blue light-emitting diode (LED) as the modulated light source. The mean lifetimes for the supercoiled plasmids (< $\tau$ >=148 ns) were somewhat shorter than those for the relaxed plasmids (< $\tau$ >=160 ns). This suggests that the relaxed plasmids were shielded more efficiently from water. The anisotropy decay data also showed somewhat shorter slow rotational correlation times for supercoiled plasmids (288 ns) than for the relaxed plasmids (355 ns). The presence of two rotational correlation times suggests that RuBD reveals both the bending and torsional motions of the plasmids. These results indicate that RuBD can be useful for studying both the bending and torsional dynamics of mucleic acids.