• Title/Summary/Keyword: Fluorescence Response

Search Result 223, Processing Time 0.033 seconds

Effects of Root of Scutellariae Radix against Inflammatory Response in the Spinal Cord Contusion Injury in Rats (척수압박손상 흰쥐의 척수조직 염증반응에 황금(黃芩)이 미치는 영향)

  • Yang, Kee-Young;Choi, Won-Ik;Shin, Jung-Won;Park, Seong-Ha;Kim, Seong-Joon;Lee, Jong-Soo;Sohn, Nak-Won
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.3
    • /
    • pp.1-11
    • /
    • 2011
  • Objectives : This study was performed to evaluate the effects of root of Scutellariae Radix(SR) water extract against inflammatory response in the spinal cord injury(SCI). Methods : SCI was induced by mechanical contusion following laminectomy of 10th thoracic vertebra in Sprague-Dawley rat. SR was orally given once a day for 7days after SCI. Myeloperoxidase(MPO) positive neutrophils infiltration was examined. Inducible nitric oxide synthase(iNOS) and tumor necrosis factor-${\alpha}$(TNF-${\alpha}$) expressions were observed with immunohistochemistry. Glial fibrillary acidic protein(GFAP) positive astrocytes were examined using immuno-fluorescence. Results : 1. SR reduced MPO-positive neutrophils infiltration in peri-damage regions of the contusive SCI-induced rats. 2. SR reduced iNOS positive cells in the white matter of the contusive SCI-induced rats. 3. SR reduced TNF-${\alpha}$ positive cells in the gray and white matter of the contusive SCI-induced rats. 4. SR reduced cell number and size of astrocytes in peri-damage regions of the contusive SCI-induced rats. Conclusions : These results suggest that SR plays an inhibitory role against inflammatory response in the SCI.

Casein Kinases I and 2α Phosphorylate Oryza Sativa Pseudo-Response Regulator 37 (OsPRR37) in Photoperiodic Flowering in Rice

  • Kwon, Choon-Tak;Koo, Bon-Hyuk;Kim, Dami;Yoo, Soo-Cheul;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.81-88
    • /
    • 2015
  • Flowering time (or heading date) is controlled by intrinsic genetic programs in response to environmental cues, such as photoperiod and temperature. Rice, a facultative short-day (SD) plant, flowers early in SD and late in long-day (LD) conditions. Casein kinases (CKs) generally act as positive regulators in many signaling pathways in plants. In rice, Heading date 6 (Hd6) and Hd16 encode $CK2{\alpha}$ and CKI, respectively, and mainly function to delay flowering time. Additionally, the major LD-dependent floral repressors Hd2/Oryza sativa Pseudo-Response Regulator 37 (OsPRR37;hereafter PRR37) and Ghd7 also confer strong photoperiod sensitivity. In floral induction, Hd16 acts upstream of Ghd7 and CKI interacts with and phosphorylates Ghd7. In addition, Hd6 and Hd16 also act upstream of Hd2. However, whether CKI and $CK2{\alpha}$ directly regulate the function of PRR37 remains unclear. Here, we use in vitro pull-down and in vivo bimolecular fluorescence complementation assays to show that CKI and $CK2{\alpha}$ interact with PRR37. We further use in vitro kinase assays to show that CKI and $CK2{\alpha}$ phosphorylate different regions of PRR37. Our results indicate that direct posttranslational modification of PRR37 mediates the genetic interactions between these two protein kinases and PRR37. The significance of CK-mediated phosphorylation for PRR37 and Ghd7 function is discussed.

Protective Effects of Ursolic Acid on Osteoblastic Differentiation via Activation of IER3/Nrf2

  • Lee, Sang-im
    • Journal of dental hygiene science
    • /
    • v.19 no.3
    • /
    • pp.198-204
    • /
    • 2019
  • Background: Oxidative stress is a known to be associated with in the pathogenesis of many inflammatory diseases, including periodontitis. Ursolic acid is a pentacyclic triterpenoid with has antimicrobial, antioxidative, and anticancer properties. However, the role of ursolic acid in the regulating of osteogenesis remains undetermined. This study was aimed to elucidate the crucial osteogenic effects of ursolic acid and its ability to inhibit oxidative stress by targeting the immediate early response 3 (IER3)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Methods: Cell proliferation was determined using water-soluble tetrazolium salt assay, cell differentiation was evaluated by alkaline phosphatase (ALP) activity, and formation of calcium nodules was detected using alizarin red S stain. Generation of reactive oxygen species (ROS) was determined using by DCFH-DA fluorescence dye in hydrogen peroxide ($H_2O_2$)-treated MG-63 cells. Expression levels of IER3, Nrf2, and heme oxygenase-1 (HO-1) were analyzed using western blot analysis. Results: Our results showed that ursolic acid up-regulated the proliferation of osteoblasts without any cytotoxic effects, and promoted ALP activity and mineralization. $H_2O_2$-induced ROS generation was found to be significantly inhibited on treatment with ursolic acid. Furthermore, in $H_2O_2$-treated cells, the expression of the early response genes: IER3, Nrf2, and Nrf2-related phase II enzyme (HO-1) was enhanced in the presence of ursolic acid. Conclusion: The key findings of the present study elucidate the protective effects of ursolic acid against oxidative stress conditions in osteoblasts via the IER3/Nrf2 pathway. Thus, ursolic acid may be developed as a preventative and therapeutic agent for mineral homeostasis and inflammatory diseases caused due to oxidative injury.

Response of Leaf Pigment and Chlorophyll Fluorescence to Light Quality in Soybean (Glycine max Merr. var Seoritae) (콩의 광질에 대한 엽 색소 및 엽록소 형광반응 연구)

  • Park, Sei-Joon;Kim, Do-Yun;Yoo, Sung-Yung;Kim, Hyun-Hee;Ko, Tae-Seok;Shim, Myong-Yong;Park, So-Hyun;Yang, Ji-A;Eom, Ki-Cheol;Hong, Sun-Hee;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.400-406
    • /
    • 2010
  • Etiolation of plant leaves evoke to be photosynthetically inactive because plant leaves are unable to convert photochlorophyllide to chlorophyllide in the absence of light. In addition, UV-B radiation plays an important role in photomorphogenesis and excessive UV-B radiation decreases photosynthesis and causes to damage to cellular DNA. In the present study, two electrical lights obtained with the ultraviolet lamp and moderate lamp were employed to young plants soybean (Glycine max Merr. var Seoritae). After treatment of different lights, young plants were harvested for the determination of pigment contents and chlorophyll fluorescence. The contents of carotenoids and anthocyanins were significantly enhanced with the excessive UV-B radiation. Excessive UV-B light reduced dramatically photosynthetic efficiency causing an irreversible damage on PSII in comparison to the controls treated under normal illumination. As the treatment of normal illumination after dark treatment, the contents of carotenoids and anthocyanains were not changed in the leaves and photosynthetic ability were retained. Therefore, Seoritae soybean leaves might protect themselves from excessive UV-B radiation with up-regulation of antioxidants.

Photochemical Response Analysis on Different Seeding Date and Nitrogen (N) level for Maize (Zea mays L.) (옥수수의 파종시기 및 질소수준별 광화학적 반응 해석)

  • Park, So-Hyun;Yoo, Sung-Yung;Lee, Min-Ju;Park, Jong-Yong;Song, Ki-Tae;Kim, Tae Wan;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The photochemical characteristics were analyzed in the context of sowing time and different levels of fertilized nitrogen during the maize (Zea mays L.) growth. When maize was early sawn, the fluorescence parameters related with electron-transport, in photosystem II (PSII) and PSI, were effectively enhanced with the higher level of fertilized nitrogen. Highest values were observed in maize leaves grown in double N-fertilized plot. The photochemical parameters were declined in the progress of growth stage. In early growth stage, the fluorescence parameters were highest, and then reduced to about half of the parameters related with electron transport on PSII and PSI at middle and late growth stages. In 1/2 N plot, the photochemical energy dissipation was measured to 13% in term of active reaction center per absorbed photon resulting in decrease in performance index and driving force of electron. This decrease induced to lower the photochemical effectiveness. In 2 N plots, the electron transport flux from $Q_A$ to $Q_B$ per cross section and the number of active PSII RCs per cross section were considerably enhanced. It was clearly indicated that the connectivity between photosynthetic PSII and PSI, i.e. electron transport, was far effective.

Selecting Appropriate Seedling Age for Restoration Using Comparative Analysis of Physiological Characteristics by Age in Abies koreana Wilson

  • Seo, Han-Na;Chae, Seung-Beom;Lim, Hyo-In;Han, Sim-Hee;Lee, Kiwoong
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.4
    • /
    • pp.315-322
    • /
    • 2021
  • The aim of this study was to investigate the sensitivity to environmental stress, and changes in the photosynthesis capacity in Abies koreana seedlings by age and to suggest the most effective age for restoration. To identify these physiological characteristics of A. koreana, the chlorophyll fluorescence and photosynthetic capacity of 1-, 2-, 3-, 5- and 6-year-old A. koreana seedlings were observed from June 2020 to June 2021. The maximum quantum efficiency of Photosystem II (Fv/Fm), a chlorophyll fluorescence measurement parameter, was strongly positively correlated with the monthly average temperature (1-year-old seedling: r=0.8779, 2-year-old seedling: r=0.8605, 3-year-old seedling: r=0.8697, 5-year-old seedlings: r=0.8085, and 6-year-old seedlings: r=0.8316). The Fv/Fm values were the lowest in winter (November 2020-March 2021). In addition, the Fv/Fm values of 1-, 2-, and 3-year-old seedlings in winter were lower than that of 5- and 6-year-old seedlings, while the Fv/Fm values in summer were relatively higher than those in winter. Further, the Fv/Fm values of seedlings of all ages decreased in August 2020, when the monthly average temperature was the highest. In particular, 1-year-old to 3-year-old seedlings showed Fv/Fm values less than 0.8. Further, the photosynthetic capacity measured in August 2020 increased with increasing seedling age. The analysis of variance results for summer Fv/Fm values showed significant differences in age-specific averages (p<0.05), and Duncan's multiple range test showed significant differences between 5- and 6-year-old seedlings and 1-, 2-, and 3-year-old seedlings (p<0.05). These results suggested that the 5- and 6-year-old seedlings were less sensitive to environmental stress and showed better photosynthetic capacity than the 1-, 2-, and 3-year-old seedlings. Therefore, 5-year-old or older A. koreana seedlings can be used as restoration materials because they can show increased adaptability and stable growth during transplantation due to their relatively high environmental resistance and photosynthetic capacity.

Growth and community response of phytoplankton by N, P and Fe nutrient addition in around water of Ulleungdo and Dokdo in East Sea (동해 울릉도-독도해역에서 질소, 인, 철 첨가실험에 따른 식물플랑크톤의 성장 및 군집반응)

  • Baek, Seung Ho;Lee, Minji;Kim, Yun-Bae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.186-195
    • /
    • 2016
  • We investigated phytoplankton and vertical inorganic nutrients at two stations around water of Ulleungdo and Dokdo in the East Sea, Korea. Nutrient addition experiments (+N, +P, +NP and +Fe) were also conducted to determine the growth response and nutrient consumption of the phytoplankton assemblage using the surface water of St. UD3 and St.50. In the field, although inorganic nutrients were low in the euphotic layer, these nutrients were increased at depths below 100 m. The total phytoplankton abundances in St. UD3 and St.50 were $4.9{\times}10^5cells\;L^{-1}$ and $1.9{\times}10^5cells\;L^{-1}$, respectively. The dominant species at St. UD3 was observed to be Raphidophyta Heterosigma akashiwo, Cryptophyta Crytomonas spp., and diatom Leptocylindrus danicus, while L. danicus and H. akashiwo including small diatom species Chaetoceros socialis were dominant at St. 50. In the nutrient addition experiments, phytoplankton growth (in vivo flourescence) in the +N and +NP treatment was 2-3 times higher than that in the +P treatment, indicating that the natural phytoplankton can respond to pulsed nutrient loading events. In addition, in vivo fluorescence in +Fe treatment was not statistically (p>0.05) different from that of the non-Fe treatments, indicating that the phytoplankton growth response in +Fe treatment was not significant. Dominant H akashiwo and L. danicus in the field showed a rapid response in nutrient additional bio-algal assay, particularly L. danicus in the +Fe treatments.

Molecular cloning of peroxidase cDNAs from dehydration-treated fibrous roots of sweetpotato and their differential expression in response to stress

  • Kim, Yun-Hee;Yang, Kyoung-Sil;Kim, Cha-Young;Ryu, Sun-Hwa;Song, Wan-Keun;Kwon, Suk-Yoon;Lee, Haeng-Soon;Bang, Jae-Wook;Kwak, Sang-Soo
    • BMB Reports
    • /
    • v.41 no.3
    • /
    • pp.259-265
    • /
    • 2008
  • Three peroxidase (POD) cDNAs were isolated from dehydration-treated fibrous roots of sweetpotato (Ipomoea batatas) plant via the screening of a cDNA library, and their expressions were assessed to characterize functions of each POD in relation to environmental stress. Three PODs were divided into two groups, designated the basic PODs (swpb4, swpb5) and the anionic PODs (swpa7), on the basis of the pI values of mature proteins. Fluorescence microscope analysis indicated that three PODs are secreted into the extracellular space. RT-PCR analysis revealed that POD genes have diverse expression patterns in a variety of plant tissues. Swpb4 was abundantly expressed in stem tissues, whereas the expression levels of swpb5 and swpa7 transcripts were high in fibrous and thick pigmented roots. Swpb4 and swpa7 showed abundant expression levels in suspension cultured cells. Three POD genes responded differently in the leaf and fibrous roots in response to a variety of stresses including dehydration, temperature stress, stress-associated chemicals, and pathogenic bacteria.

Saussurea Lappa Radix-induced cytotoxicity via ROS generation in A549 lung cancer cells (A549세포에 대한 목향추출물의 ROS 매개 세포독성)

  • Lee, Young-Joon;Ku, Sae-Kwang;Kang, Su-Jin
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.169-178
    • /
    • 2013
  • Objectives : Many cancers acquired resistance to chemotherapy, thus limiting its anticancer efficacy. It is known that Glutathione (GSH) is related to the development of drug resistance. The expression of GSH synthesizing glutamylcysteine ligase (GCL) was controlled by nuclear factor-E2-related factor(Nrf2). Previous studies showed that pharmacological depletion of GSH results in ROS increase, apoptotic response, and sensitization to oxidizing stimuli. In the current study, we examined Saussurea Lappa (SL) have the inhibitory effect on Nrf2 activity using human lung cancer A549 cells overexpressing Nrf2. Methods : Cell viability of A549 cells on SL treatment was determined by MTT assay. To detect the apeptosis in SL-treated A549 cells, sub-G1 population was measured by flow cytometry analysis (FACS). The level ROS was determined by FACS and fluorescence microscopy. To investigate whether SL have effect the suppression on Nrf2, we performed western blotting analysis. The GSH content was measured since GSH plays an important role in response to oxidative stress and was regulated by Nrf2. Results : A549 cells treated with an SL extract showed a substantial decrease in cell viability, along with a concomitant increase in apoptosis compared to untreated cells. Treatment of the SL extract led to increased Reactive oxygen species (ROS) production and a suppression of Nrf2. In addition, the antioxidant NAC attenuated SL-induced ROS generation, Nrf2 inhibition, and apoptosis. Taken together, these data show that the SL extract induced the production of ROS, and the inhibition of Nrf2, consequently resulting in A549 cell death. Conclusions : These results suggest that SL might be an effective agent to enhance anticancer drug sensitivity via Nrf2 inhibition.

AN EXPERIMENTAL STUDY ON THE CHANGES OF RAT MOLAR PERIODONTIUM INCIDENT TO INTERMITTENT FORCE (간헐적 교정력에 의한 백서 구치 치주조직의 변화에 관한 실험적 연구)

  • Kim, Sun-Hae;Suhr, Cheong-Hoon
    • The korean journal of orthodontics
    • /
    • v.19 no.2
    • /
    • pp.57-73
    • /
    • 1989
  • The purpose of this study was to investigate the tissue response of the rat molar periodontium incident to intermittent orthodontic force. The author intended to observe the healing process of injured periodontium and the response of injured tissue to the resumed force. Oxytetracyclin 50mg/Kg was given to each rat intraperitonially. 5 days later, maxillary 1st molars were moved mesially from the incisors with closed coil spring of 100gram. 7 days later, the appliances were removed and 20mg/Kg of calcein were given intraperitonially to each rat. At the same time, maxillary left 1st molars of 15 rats were moved by the same method, but force was lowered to 20 gram. After 1 day, maxillary left 1st molars of another 15 rats were moved by the same method and 50mg/Kg of oxytetracycline was given intraperitonially. After 4 days, another 15 rats were treated as above. After 7 days, another 15 rats were treated as above. 1,4,7,10 and 14 days after change of force, 3 rats were sacrificed in each group respectively. 2 rats were decalcified, embedded in paraffin, and stained with hematoxylin-eosin stain and with Masson's trichrome stain. Another rat was embedded in polyester resin and undecalcified specimen were made. Microradiograms were taken with the undecalcified sections. Observations were made with light and fluorescence microscope. Following conclusions were made. 1. Connective tissue cells and vessels were infiltrated into the hyalinized tissue from the bony cleft and along the border of the hyalinized tissue with bone and root surface. At the same time, elimination of hyalinized tissue, bone and root resorption occurred. 2. Bone and root were resorbed directly and indirectly. 3. Hyalinized tissue was removed within 5 days after force removal. 4. Hyalinized zone was less extensive and easily removed as the rest period prolonged. 5. Hyalinized tissue developed more rapidly and extensively and lasted over 10 days as the force resumed on the already formed hyalinized tissue.

  • PDF