• Title/Summary/Keyword: Fluidized-bed dryer

Search Result 9, Processing Time 0.028 seconds

Energy Efficiency of Fluidized Bed Drying for Wood Particles

  • Park, Yonggun;Chang, Yoon-Seong;Park, Jun-Ho;Yang, Sang-Yun;Chung, Hyunwoo;Jang, Soo-Kyeong;Choi, In-Gyu;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.821-827
    • /
    • 2016
  • This study evaluates the economic feasibility of industrializing fluidized bed dryer for wood particles. The theoretically required heat energy and energy efficiency were evaluated using a pilot scale fluidized bed dryer. When Mongolian Oak wood particles with 50% initial moisture content were dried in the fluidized bed dryer with air of $70^{\circ}C$ air circulating at 1.1-1.3 m/s for 30 minutes, the total theoretically required heat energy was 2,177 kJ. Of this, 1,763 kJ (approximately 81.0%) was used to heat the air flowing in from outside the dryer and 386 kJ (approximately 17.7%) was used to heat and remove water from the wood particles. Actual energy consumed was 7,560 kJ, giving energy efficiency of 28.8%. Thus, to industrialize a drying method such as fluidized bed drying, where the dryer volume is significantly larger than the volume of wood particles, it is necessary to minimize energy loss and maximize energy efficiency by designing the dryer size considering the amount of wood particles and choosing a suitable air circulation rate.

Low-Temperature Microencapsulation of Sesame Oil Using Fluidized Bed Granulation (Fluidized bed granulation을 이용한 참기름의 저온 미세캡슐화)

  • Jeong, Chan-Min;Lee, Min-Kyung;Lee, Hyun-Ah;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.27-31
    • /
    • 2009
  • Top spray-drying method is frequently utilized for flavor encapsulation, but the top spray-dried products frequently suffer from high losses of volatile flavor as the result of a high processing temperature (150-$300^{\circ}C$). In an effort to solve these problems, a low-temperature fluidized-bed granulating method was utilized to encapsulate the flavor. For the encapsulation of sesame oil, oil-in-water emulsions of sesame oil and a mixture of maltodextrin, modified starch, gum arabic, and gellan gum were bottom-sprayed at milder temperatures (70-$100^{\circ}C$) using a fluidized-bed granulator. Sesame oil extracts from microcapsules were obtained via a simultaneous distillation/extraction technique, and the retention of volatile flavor compounds was analyzed via a gas chromatography-mass spectrometry. The retention of volatile flavors of sesame oil per se, spray-dried and fluidized-bed granulated microcapsules after 3-day-storage at $37^{\circ}C$ were 0.8%, 37.2%, and 42.0%, respectively. In addition, the low-temperature fluidized-bed granulation showed higher encapsulation yield and sensory preferences for the application of commercial products (beef rice porridge), as compared to spray drying.

Drying Characteristics of High Moisture Low Rank Coal using a Steam Fluidized-bed Dryer (스팀 유동층 건조기를 이용한 고수분 저등급 석탄의 건조 특성)

  • Kim, Gi Yeong;Rhee, Young-Woo;Park, Jae Hyeok;Shun, Dowon;Bae, Dal-Hee;Shin, Jong-Seon;Ryu, Ho-Jung;Park, Jaehyeon
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.321-329
    • /
    • 2014
  • In this study, Indonesia low rank coal, which has moisture content of around 26%, is dried less than 5% by using a laboratory-scale (batch type) steam fluidized-bed dryer in order to produce the low-moisture, high rank coal. Normally, CCS (carbon capture and storage) process discharges $CO_2$ and steam mixture gas around $100-150^{\circ}C$ of temperature after regeneration reactor. The final purpose of this research is to dry low rank coal by using the outlet gas of CCS process. At this stage, steam is used as heat source for drying through the heat exchanger and $CO_2$ is used as fluidizing gas to the dryer. The experimental variables were the steam flow rate ranging from 0.3 to 1.1 kg/hr, steam temperature ranging from 100 to $130^{\circ}C$, and bed height ranging from 9 to 25 cm. The characteristics of the coal, before and after drying, were analyzed by a proximate analysis, the heating value analysis and particle size analysis. In summary, the drying rate of low rank coal was increased as steam flow rate and steam temperature increased and increased as bed height decreased.

A Study on the Drying and Carbonization of Sewage Sludge in Fluidized Bed Reactor (유동층 반응기에서 하수슬러지의 건조 및 탄화 특성에 관한 연구)

  • Choung, Young-Hean;Cho, Ki-Chul;Kang, Dong-Hyo;Kim, Yi-Kwang;Park, Chang-Woong;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.746-751
    • /
    • 2006
  • In this study, drying and carbonization experiment was conducted in a fluidized bed reactor according to the variations in gas velocity, particle size, and reactor temperature. As a result, the weight loss rates of sludge by drying in the fixed bed and fluidized bed type dryer showed that drying in the fluidized bed was about 6 times faster than drying in the fixed bed, and the weight loss rates of sludge by carbonization in the fixed bed and fluidized bed type reactor showed that carbonization in the fluidized bed was about 4 times faster than drying in the fixed bed. This implies that carbonization in the fluidized bed was completed within 10 minutes. Although the amount of char decreased with the increase of carboniration temperature, the amount of char became similar at upper 873K. Also, the amount of char decreased with increasing gas velocity. Consequently, it could be efficient that slow fluidization should be maintained within the range of fluidization in case of fluidized carbonization of sewage sludge at 873K.

DESIGN OF FLUIDIZED BED DRYER OF THE SUPER CEREAL PLANT (쌀밀 제조공장의 유동층건조장치설계)

  • Shik Namkoong;Kang, Chung-Gyu;Chung, Chull-Hae;Kang, Chong-Min
    • Microbiology and Biotechnology Letters
    • /
    • v.1 no.1
    • /
    • pp.59-65
    • /
    • 1973
  • The details of design procedure, practically used for the construction of fluidized bed dryer system of the Super Cereal Plant of 250, y capacity were presented. The plant was in its entirety designed and constructed solely by domestic engineering potenality with local construction materials. In the drying process, the water content of cooked kernel of wheat is reduced from about 23% to about 14% and the conversion of starch contained in the endosperm to ${\alpha}$-starch is to be completed by contacting with hot combustion gas of kerosene at about 90-130$^{\circ}C$.

  • PDF

Experimental Analysis on Multistage Fluidized Bed Dryer (다단유동층 건조기에 대한 실험적 연구)

  • 김규형;최경빈;박상일;고창복;김정근
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.59-62
    • /
    • 2002
  • 유동층 건조법은 다공판으로 된 베드 위에 피건조물을 두고 아래쪽에서 열풍을 보내어 열풍속에서 재료를 부유시켜 열풍과 혼합함으로써 건조되는 방식으로 분체의 건조에 유효한 건조방법으로 알려져 있다. 열 및 물질 전달이 상당히 커서 건조가 빠르게 일어나고 온도가 균일하며 균일한 건조가 가능하다. 또한 건조장치의 처리용량이 비교적 크고 장치의 구조가 단순하여 건조장치의 경제성과 신뢰성이 우수하다.(중략)

  • PDF

Drying Characteristics of Fine Polymers in an Inert Medium Fluidized Bed (매체유동층에서 미세 고분자의 건조특성)

  • Kim, Og-Sin;Lee, Dong-Hyun
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.209-214
    • /
    • 2011
  • The effects of inlet gas velocity (0.26-0.31 m/s), inlet gas temperature (315-353 K) and the mass ratio (0.1-0.4) of fine polymer (crosslinked poly methyl methacrylate beads) to inert medium particles on the drying rate of fine polymer in a 0.15 m-ID ${\times}$ 1.0 m-high inert medium fluidized bed dryer have been investigated. Crosslinked PMMA beads of 20 ${\mu}m$ (group C) were used as fine polymer, and glass beads of 590 ${\mu}m$ (group B) were used as the inert medium. The drying rate increases with increasing inlet gas temperature and velocity. However, the drying rate decreases slightly as the mass ratio of fine polymer to inert medium particles increases. The particle size distribution of dried fine polymers was mono distribution.

A Study on the Improvement of Potassium Based Sorbent for Flue Gas Carbon Dioxide(CO2) (배가스 이산화탄소(CO2)용 Potassium계 흡수제의 성능 향상 연구)

  • Wi, Young Ho;Ryu, Chong Kul;Choi, Dong Hyeok
    • Journal of Climate Change Research
    • /
    • v.2 no.2
    • /
    • pp.107-113
    • /
    • 2011
  • In this research, we described the experimental results for the improvement of Potassium based sorbents. These sorbents have been actually used in the 0.5 MW $CO_2$ capture plant located in Hadong #3 Power Plant. Firstly, we had shaped two kinds of sorbents using a spray dryer. These sorbents applied magnetite & copper oxide as an additive. And the magnetite sorbent was evaluated more excellent relatively in the attrition index. Secondly, We had obtained TGA multicycle experimental results of the improved Potassium based sorbent which applied magnetite as an additive. Consequently, $CO_2$ sorption capacity had been sustained 5.5 wt% after 2nd cycle and attrition index was very excellent as 0.5%. Finally, we had investigated the characteristics of the sorbent following in properties of supporters. As a result, the sorption capacity of the KMO sorbent used base material as a supporter was appeared as 7.2 wt%.

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.