• 제목/요약/키워드: Fluidized-Bed

검색결과 768건 처리시간 0.026초

도금폐수처리를 위한 입상활성탄 유동 메디아 적용 유동상 멤브레인 여과기술의 적용가능성 평가에 관한 연구 (Study on Feasibility of Fluidized Bed Membrane Reactor with Granular Activated Carbon Particles as Fluidized Media to Treat Metal-plating Wastewater)

  • 장수민;권대은;김정환
    • 멤브레인
    • /
    • 제28권4호
    • /
    • pp.252-259
    • /
    • 2018
  • 실 산성 도금폐수를 입상활성탄(GAC)이 유동메디아로 첨가된 유동상 멤브레인 반응기를 이용하여 처리하였다. GAC 유동조건에서 적용 투과플럭스에 대해 시간에 따른 흡입압의 증가는 관찰되지 않았다. 폐수의 중성 pH에서 파울링 속도는 산성 조건에 비해 GAC 유동조건에서 크게 감소하였다. 해당 폐수의 용액 pH 증가는 입자크기의 증가를 가져왔고 이는 멤브레인 표면에서 상대적으로 성긴 구조의 케이크층 형성을 야기시켰다. 유동상 멤브레인 반응기에서 GAC 유동 하에 95%이상의 COD 제거율이 관찰되었으며 총부유물질은 거의 완벽하게 제거되었다. 실 도금폐수의 pH에서, 유동상 멤브레인 반응기의 구리 및 크롬의 제거는 거의 관찰 되지 않았다. 그러나 pH를 중성으로 증가 시켰을 시 구리와 크롬의 제거율은 각각 99%와 94%까지 증가를 하였다. 적용해 준 pH에 상관 없이, 시안의 경우 95% 이상의 제거율을 달성하였다. 이는 유기물과 시안 착물 형성으로 인해 유동상 멤브레인 반응기 내 GAC의 강한 흡착으로 제거된 것으로 사료된다.

감압 상태 순환유동층 반응기에서 플라즈마 그래프팅에 의한 미세입자 표면 개질 (Surface Modification of Fine Particle by Plasma Grafting in a Circulating Fluidized Bed Reactor under Reduced Pressure)

  • 박성희
    • Korean Chemical Engineering Research
    • /
    • 제53권5호
    • /
    • pp.614-619
    • /
    • 2015
  • 미세입자의 플라즈마 표면 개질을 감압상태하의 순환유동층 반응기에서 수행하였다. 플라즈마에 의해 처리된 폴리스타이렌 입자는 폴리에틸렌글리콜로 표면에 그래프팅하였다. 표면 개질 전 입자와 플라즈마 처리된 입자 그리고 그래프팅된 입자의 특성은 각각 DPPH 방법, FTIR, SEM 그리고 접촉각 측정으로 분석하였다. 플라즈마 처리된 폴리스타이렌 입자의 표면에 과산화물이 잘 형성되었다. 또한, 폴리에틸렌글리콜의 그래프팅 중합에 의해 플라즈마 처리된 입자 표면에 그래프팅이 잘 분산되었다. 따라서 감압상태의 순환 유동층 반응기에서 플라즈마 처리에 의한 PEG-g-PS 입자를 성공적으로 형성할 수 있었다.

카본블랙 촉매를 이용한 유동층 반응기에서 메탄의 직접 열 분해에 의한 수소생산 연구 (Hydrogen production by catalytic decomposition of methane over carbon black catalyst in a fluidized bed)

  • 정재욱;남우석;윤기준;이동현;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.284-287
    • /
    • 2005
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_2 - free$ hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane decomposition reaction was carried out at the temperature range of $850-925^{\circ}C$, methane gas velocity of $1.0U_{mf}\;3.0U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by SEM image.

  • PDF

Triboelectrostatic Separation System for Separation of PVC and PS Materials Using Fluidized Bed Tribocharger

  • Lee, Jae-Keun;Shin, Jin-Hyouk;Hwang, Yoo-Jin
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1336-1345
    • /
    • 2002
  • A triboelectrostatic separation system using a fluidized bed tribocharger for the removal of PVC material in the mixture of PVC/PS plastics is designed and evaluated as a function of electric field strength, air flow rate, and the mixing ratio of two-component mixed plastics. It consists of a fluidized-bed tribocharger, a separation chamber, a collection chamber and a controller. PVC and PS particles can be imparted negative and positive surface charges, respectively, due to the difference in the work function values of plastics suspended in the fluidized-bed tribocharger, and can be separated by passing them through an external electric field. Experimental results show that separation efficiency is strongly dependent on the electric Deld strength and particle mixing ratio. In the optimum conditions of 150 Ipm air flow rate and 2.6 kV/cm electric field strength a highly concentrated PVC (99.1%) can be recovered with a yield of more than 99.2% from the mixture of PVC and PS materials for a single stage of processing.

유동층 반응기에서 N330 카본 블랙 촉매를 이용한 프로판을 포함한 메탄의 촉매분해에 의한 수소 제조 (Hydrogen production by catalytic decomposition of propane-containing methane over N330 carbon black in a fluidized bed)

  • 이승철;이강인;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.761-764
    • /
    • 2009
  • The thermocatalytic decomposition of methane is an environmentally attractive approach to $CO_2$-free production of hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbon from the reactor. The usage of carbon black was reported as stable catalyst for decomposition of methane. Therfore, carbon black (DCC-N330) is used as catalyst. A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was selected for the thermo-catalytic decomposition. The porpane-containg methnae decomposition reaction was operated at the temperature range of 850-900 $^{\circ}C$ methane gas velocity of 1.0 $U_{mf}$ and the operating pressure of 1.0 atm. In this work, propane was added as reactant to make methane conversion higher. Therefore we compared with methane conversion and pre-experiment methane conversion that using only methane as reactant. The carbon black, after experiment, was measured in particle size and surface area and analyzed surface of the carbon black by TEM.

  • PDF

가압유동층 반응기에서 카본블랙 촉매를 이용한 메탄의 촉매분해에 의한 수소제조 (Hydrogen production by catalytic decomposition of methane over carbon black catalyst in a fluidized bed on pressurized bench-scale condition)

  • 서형재;이승철;이강인;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.791-793
    • /
    • 2009
  • Hydrogen has been recognized of the energy source for the future, in terms of the most environmentally acceptable energy source. A pressurized fluidized bed reactor made of carbon steel with 0.076 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce amount of $CO_2$ - free hydrogen with validity from a commercial point of view. The fluidized bed was proposed for withdrawing of product carbons from the reactor continuously. The methane decomposition rate with the carbon black N330 catalyst was rapidly reached a quasi-steady state and remained for several hour. The methane thermocatalytic decomposition reaction was carried out at the temperature range of 850 - 950 $^{\circ}C$, methane gas velocity of 2.0 $U_{mf}$ and the operating pressure of 1.0 -3.0 bar. Effect of operating parameters such as reaction temperature, pressure on the reaction rates was investigated and predicted the effect of a change in conditions on a chemical equilibrium thermodynamically, according to Le Chatelier's principle.

  • PDF

카본블랙 촉매를 이용한 유동층 반응기에서 메탄과 프로판 혼합물의 촉매 분해에 의한 수소생산 연구 (Hydrogen production by catalytic decomposition of methane and propane mixture over carbon black catalyst in a fluidized bed)

  • 이승철;윤용희;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.57-60
    • /
    • 2007
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_{2}$ - free hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane and propane mixture decomposition reaction was carried out at the temperature range of 850 - 900 $^{\circ}C$, methane and propane mixture gas velocity of 1.0 $U_{mf}$ ${\sim}$ 3.0 $U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by SEM image.

  • PDF

유동층 반응기에서 카본블랙 촉매를 이용한 프로판의 촉매 분해에 의한 수소생산 연구 (Hydrogen production by catalytic decomposition of propane over carbon black catalyst in a fluidized bed)

  • 남우석;정재욱;윤기준;이동현;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.388-391
    • /
    • 2006
  • A fluidized bed reactor made of quartz with 0.055m I.D. and 1.0m in height was employed for the thermocatalytic decomposition of propane to produce $CO_2-free$ hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor The propane decomposition rate used carbon black DCC-N330, Hi-900L as a catalyst. The propane decomposition reaction was carried out at the temperature range of $600-800^{\circ}C$, propane gas velocity of $1.0U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature on the reaction rates was investigated. Resulting production in our experiment were not only hydrogen but also several by products such as methane, ethylene, ethane, and propylene.

  • PDF

반응표면분석에 의한 분유의 유동층 과립공정 최적화 (Optimization of Fluidized Bed Granulating Conditions for Powdered Milk by Response Surface Methodology)

  • 강현아;신명곤
    • 한국식품영양과학회지
    • /
    • 제33권1호
    • /
    • pp.225-228
    • /
    • 2004
  • 반응표면분석법(RSM)을 활용하여 유동층과립기의 흡입공기온도, 물의 투입비율, 분무압력 등이 분유의 과립화에 미치는 영향을 분석하였다. 분유의 과립화 수율은 물의 투입 비율에 많은 영향을 받고 있음을 알 수 있었으며, 겉보기밀도 및 다짐 밀도는 분무압력에 크게 영향을 받고 있음을 보여주었다. 분유의 유동층 과립화의 최적조건은 흡입공기온도6$0^{\circ}C$, 물의 투입비율 16 mL/min, 그리고 분무압력 2.1 bar이었으며, 이때 과립화 수율은 94.0%, 겉보기밀도는 0.350 g/㎤, 그리고 다짐밀도는 0.446 g/㎤로 각각 예측되었다.

열매체유 유동층 열교환기의 전열성능에 대한 실험적 연구 (An Experimental Study on Heat Transfer Performance of Heating Medium Oil Fluidized Bed Heat Exchanger)

  • 박상일;고창복;이영수
    • 설비공학논문집
    • /
    • 제27권3호
    • /
    • pp.146-151
    • /
    • 2015
  • The heat transfer performance of heating medium oil fluidized bed heat exchanger was measured. The operation variables were air flow rate, air inlet temperature, moisture content, water flow rate and water inlet temperature. The outside heat transfer coefficient was determined from the heat exchanger experiment and its experimental correlation was determined as a function of air velocity and viscosity of heating medium oil. Effect of viscosity was well agreed with the previous studies. Errors of the correlation equation was less than about 10% for outside heat transfer coefficient developed in this study when compared with the measured value. Hot water with the temperature greater than $77^{\circ}C$ could be produced by using the heating medium oil fluidized bed heat exchanger.