• 제목/요약/키워드: Fluidic technique

검색결과 27건 처리시간 0.021초

미세유로채널의 새로운 제작공정 및 표면상태가 유동에 미치는 영향 (Novel Fabrication Process for Micro-Fluidic Channels and the Effect of the Surface States on the Fluid Flow)

  • 박미석;김진산;성인하;김대은;신보성
    • 한국정밀공학회지
    • /
    • 제21권1호
    • /
    • pp.87-93
    • /
    • 2004
  • Recently, with the development of bio-technology the interests in the micro-fluidic devices for analysis in the fields of biology and medical science have been steadily increasing. Although polymer is considered as one of the best materials for micro-fluidic devices. glass or silicon molds fabricated by photo-lithographic technique have been commonly used. However, it is generally perceived that the conventional photolithographic technique has the limitation for fabricating micro-channels for micro-fluidic devices. In this work, the possibility of fabrication of micro-fluidic channels on PDMS by using the mechano-chemical process and the effect of surface states on the fluid flow were investigated. Experimental results revealed that PDMS mold fabricated by the mechano-chemical process could be used effectively to replicate micro-fluidic channels with high reproducibility and dimensional accuracy. It was also found that the fluid flow generation and flow speed were largely affected by the hydrophilicity and the surface roughness of the micro-channel surfaces.

유연하고 신속한 표면미세가공기술을 이용한 Micro-fluidic Channel 제작 (Fabrication of Micro-fluidic Channels using a Flexible and Rapid Surface Micro-machining Technique)

  • 김진산;성인하;김대은
    • 한국공작기계학회논문집
    • /
    • 제11권4호
    • /
    • pp.97-101
    • /
    • 2002
  • Recently, the need for transporting and manipulating minute amount of fluids in microscale channels (so-called micro-fluidics) has been increasing, especially in biotechnology and biochemical processing. This work demonstrates that the so-called mechano-chemical process which consists of mechanical abrasive action combined with chemical process can be used to f뮤ricate micro-fluidic channels more rapidly and cost effectively than other methods. In this work, capillary filling of fluids in micro-channels was investigated by theoretical approaches and experiments. From the experimental results, it is expected that a complex micro-fluidic system can be fabricated using the micro-fabrication technique and microsystem packaging method described in this work.

유연하고 신속한 표면미세가공기술을 이용한 Micro-fluidic Channel 제작 (Fabrication of Micro-fluidic Channels using a Flexible and Rapid Surface Micro-machining Technique)

  • 김진산;성인하;김대은
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.603-607
    • /
    • 2002
  • Recently, the need leer transporting and manipulating minute amount of fluids in microscale channels (so-called micro-fluidics) has been increasing, especially in biotechnology and biochemical processing. This work demonstrates that the mechano-chemical process which consists of mechanical abrasive action combined with chemical process can be used to fabricate micro-fluidic channels more rapidly and cost effectively than other methods. In this work, capillary filling of fluids in micro-channels was investigated by theoretical approaches and experiments. From the experimental results, it is expected that a complex micro-fluidic system can be fabricated using the micro- fabrication technique and microsystem packaging method described in this work.

  • PDF

A Study on the Characteristics of an Oscillating Fluidic Atomizer

  • Kim, K.H.;Kiger, K.;Lee, W.
    • 한국분무공학회지
    • /
    • 제11권2호
    • /
    • pp.105-112
    • /
    • 2006
  • A unique feature of fluidic atomizers is that the nozzle geometry produces a thin capillary Jet which is forced to oscillate on a 2-dimensional plane through the use of a passive feedback mechanism. The objective of the current work is to characterize the influence of the stagnation pressure at the nozzle exit, jet oscillation and stretching on the breakup properties of the capillary ligament. To achieve this, shadow graph technique is used to measure size, shape, velocity and the number density of the droplets as a function of the position within the spray fan. The breakup length, defined as the radial distance from the breakup point, is analyzed as a function of the non-dimensional parameters. Finally, a kinematic model is developed to simulate the breakup of the oscillating jets at low stagnation pressures. Using the existing jet breakup theories, the model is used to predict the size and diameter distribution of the droplets after primary atomization.

  • PDF

Electrohydrodynamic Analysis of Dielectric Guide Flow Due to Surface Charge Density Effects in Breakdown Region

  • Lee, Ho-Young;Kang, In Man;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.647-652
    • /
    • 2015
  • A fully coupled finite element analysis (FEA) technique was developed for analyzing the discharge phenomena and dielectric liquid flow while considering surface charge density effects in dielectric flow guidance. In addition, the simulated speed of surface charge propagation was compared and verified with the experimental results shown in the literature. Recently, electrohydrodynamics (EHD) techniques have been widely applied to enhance the cooling performance of electromagnetic systems by utilizing gaseous or liquid media. The main advantage of EHD techniques is the non-contact and low-noise nature of smart control using an electric field. In some cases, flow can be achieved using only a main electric field source. The driving sources in EHD flow are ionization in the breakdown region and ionic dissociation in the sub-breakdown region. Dielectric guidance can be used to enhance the speed of discharge propagation and fluidic flow along the direction of the electric field. To analyze this EHD phenomenon, in this study, the fully coupled FEA was composed of Poisson's equation for an electric field, charge continuity equations in the form of the Nernst-Planck equation for ions, and the Navier-Stokes equation for an incompressible fluidic flow. To develop a generalized numerical technique for various EHD phenomena that considers fluidic flow effects including dielectric flow guidance, we examined the surface charge accumulation on a dielectric surface and ionization, dissociation, and recombination effects.

충격파 개념에 기반한 유체 추력벡터제어에 관한 연구 (Fluidic Thrust Vector Control Using Shock Wave Concept)

  • ;김희동
    • 한국추진공학회지
    • /
    • 제23권4호
    • /
    • pp.10-20
    • /
    • 2019
  • 충격파 개념을 이용하는 유체 추력벡터 제어는 빠른 벡터링 응답, 간단한 구조 및 낮은 무게로 인하여 큰 벡터링 성능을 달성하는데 많은 이점을 제공한다. 본 논문에서는 전산유체역학 기법을 사용하여 슬롯 인젝터를 가진 3차원 직사각형 초음속 노즐에 대하여 연구를 수행하였다. 계산 방법론을 검증하기 위하여 수치 결과를 실험 데이터로 비교하였다. 대칭 평면에서의 상부 및 하부 노즐벽을 따르는 압력분포는 시험 결과와 잘 일치하였다. $k-{\omega}$ SST 난류모델을 기반으로 한 수치해석을 통하여, 운동량 플럭스 비율의 영향을 철저히 조사하여 추력의 성능 변화를 명확하게 나타내었다.

Three-Dimensional Self-Assembled Micro-Array Using Magnetic Force Interaction

  • Park, Yong-Sung;Kwon, Young-Soo;Eiichi Tamiya;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권5호
    • /
    • pp.182-188
    • /
    • 2003
  • We have demonstrated a fluidic technique for self-assembly of microfabricated parts onto substrate using patterned shapes of magnetic force self-assembled monolayers (SAMs). The metal particles and the array were fabricated using the micromachining technique. The metal particles were in a multilayer structure (Au, Ti, and Ni). Sidewalls of patterned Ni dots on the array were covered by thick negative photoresist (SU-8), and the array was magnetized. The array and the particles were mixed in buffer solution, and were arranged by magnetic force interaction. Binding direction of the metal particle onto Ni dots was controlled by multilayer structure and direction of magnetization. A quarter of total Ni dots were covered by the particles. The binding direction of the particles was controllable, and condition of particles was almost even with the Au surface on top. The particles were successfully arranged on the array.

동축류 이차유동 분사를 이용한 초음속 과팽창 제트유동의 유체역학적 추력방향제어 작동특성 연구 (A Study on Operation Characteristics of Co-flow Fluidic Thrust Vector Control under Over-expanded Jet Condition)

  • 허준영;전동현;이열;성홍계
    • 한국항공우주학회지
    • /
    • 제39권5호
    • /
    • pp.416-423
    • /
    • 2011
  • 본 연구는 주유동의 흐름과 동일한 방향으로 2차 유동을 분사하여 주유동의 방향을 제어하는, 동축류 유체역학적 추력방향제어기법에 관한 연구이다. 이는 유체역학 특징인 코안다 효과를 이용하는 기술이다. 주유동의 전압력은 설계노즐의 과팽창 조건인 300~790 kPa 이며 이차유동의 제어유동압력( 120~200 kPa )에 따른 제트편향각, 세부유동특성, 제어노즐 후방에서의 충격파에 따른 추력편향특성에 대하여 수치적, 실험적 연구를 수행하였다. 이를 바탕으로 초음속 제트유동의 방향을 변화시킬 수 있는 제어유동의 작동한계(0.15 < PR < 0.4)를 도출하였다.

미세 유체장치 내에서 Poly(Ethylene Glycol)과 Dextran 용액의 상 형성 특성 연구 (Phase-Separation Properties of Poly(Ethylene Glycol) had Dextran Solutions In Microfluidic Device)

  • 최주형;장우진;이상우
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권2호
    • /
    • pp.244-249
    • /
    • 2007
  • Fluidic conditions for the separation of phases were surveyed in a microfluidic aqueous two-phase extraction system. The infusion ratio between polyethylene glycol (PEG) and dextran solution defines the concentrations of each polymer in micro-channel, which determine the phase-separation. The appropriate ratio between PEG (M.W. 8000, 10%, w/v) and dextran T500 (M.W. 500000, 5%, w/v) in order to perform the separation of phases of both polymers was observed as changing the mixed ratio of both polymers. Based on the fluidic conditions, stable two-phase solutions were obtained within 4% to 8% and 3% to 1% of PEG and dextran, respectively. In addition, the characteristics of the two-phase were discussed. The separation technique studied in the paper can be applied for the implementation of a lab-on-a chip which can detect various biological entities such cells, bacterium, and virus in an integrated manner using built in a biosensor inside the chip.

UAV용 추력편향 노즐의 정량적 특성에 관한 실험적 연구 (Experimental Study of the Quantitative Characteristics of Fluidic Thrust Vectoring Nozzle for UAV)

  • 박상훈;이열
    • 한국항공우주학회지
    • /
    • 제42권9호
    • /
    • pp.723-730
    • /
    • 2014
  • 이차유동을 이용한 초음속 동축류 추력편향 제어기법에 대한 실험적 연구가 진행되었다. 쉴리렌 유동가시화 및 로드셀을 이용한 고정확도의 다분력 시험장치를 통하여 이차원 초음속(마하수 2.0) 유동의 추력편향 특성이 관찰되었다. 추력편향각은 부유동의 압력이 점차 커지면서 일시 감소 후 다시 증가하는 V-자형 추세를 보이고 있음이 관찰되었다. 추력편향 유동의 성능을 나타내는 성능계수들의 분석이 이루어졌으며, 보다 높은 성능지표를 나타내는 본 시스템의 운용조건이 제시되었다.