• Title/Summary/Keyword: Fluidelastic Vibration

Search Result 15, Processing Time 0.021 seconds

Fluidelastic Instability of Flexible Cylinders in Tube Bundle Subjected to Cross Air-flow (공기-횡 유동장에 놓인 유연성 실린더 관군의 유체탄성 불안정)

  • Sim, Woo-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.498-506
    • /
    • 2007
  • Using wind tunnel, experimental approaches were employed to investigate fluidelastic instability of tube bundles, subjected to uniform cross flow. There are several flow-induced vibration excitation mechanisms, such as fluidelastic instability, periodic wake shedding resonance, turbulence-induced excitation and acoustic resonance, which could cause excessive vibration in shell-and tube heat exchanges. Fluidelastic is the most important vibration excitation mechanism for heat exchanger tube bundles subjected to cross flow. The system comprised of cantilevered flexible cylinder(s) and rigid cylinders of normal square array, In order to see the characteristics of flow in tube bundles, particle image velocimetry was used. From a practical design point of view, Fluidelastic instability may be expressed simply in terms of dimensionless flow velocity and dimensionless mass-damping. The threshold flow velocity for dynamic instability of cylinder rows is evaluated and the data for design guideline is proposed for the tube bundles of normal square array.

Critical Velocity of Fluidelastic Vibration in a Nuclear Fuel Bundle

  • Kim, Sang-Nyung;Jung, Sung-Yup
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.816-822
    • /
    • 2000
  • In the core of the nuclear power plant of PWR, several cases of fuel failure by unknown causes have been experienced for various fuel types. From the common features of the failure pattern, failure lead time, flow conditions, and flow induced vibration characteristics in nuclear fuel bundles, it is deduced that the fretting wear failure of the fuel rod at the spacer grid position is due to the fluidelastic vibration. In the past, fluidelastic vibration was simulated by quasi -static semi-analytical model, so called the static model, which could not account for the interaction between the rods within a bundle. To overcome this defect and to provide for more flexibilities applicable to the fuel bundle, Tanaka's unsteady model was modified to accomodate the geometrical differences and governing parameter changes during the operations such as the number of rods, pitch to diameter ratio (P/D), spring force, damping coefficient, etc. The critical velocity was calculated by solving the governing equations with the MATLAB code. A comparison between the estimated critical velocity and the test result shows a good agreement. Finally, the level of decrease of the critical velocity due to the reduction in the spring force and reduced damping coefficient due to the radiation exposure is also estimated.

  • PDF

Influence of fluidelastic vibration frequency on predicting damping controlled instability using a quasi-steady model in a normal triangular tube array

  • Petr Eret
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1454-1459
    • /
    • 2024
  • Researchers have applied theoretical and CFD models for years to analyze the fluidelastic instability (FEI) of tube arrays in steam generators and other heat exchangers. The accuracy of each approach has typically been evaluated using the discrepancy between the experimental critical flow velocity and the predicted value. In the best cases, the predicted critical flow velocity was within an order of magnitude comparable to the measured one. This paper revisits the quasi-steady approach for damping controlled FEI in a normal triangular array with a pitch ratio of P/d = 1.375. The method addresses the fluidelastic frequency at the stability threshold as an input parameter for the approach. The excellent agreement between the estimated stability thresholds and the equivalent experimental results suggests that the fluidelastic frequency must be included in the quasi-steady analysis, which requires minimal computing time and experimental data. In addition, the model allows a simple time delay analysis regarding flow convective and viscous effects.

Mechanism analysis on fluidelastic instability of tube bundles in considering of cross-flow effects

  • Lai, Jiang;Sun, Lei;Gao, Lixia;Li, Pengzhou
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.310-316
    • /
    • 2019
  • Fluidelastic instability is a key issue in steam generator tube bundles subjected in cross-flow. With a low flow velocity, a large amplitude vibration of the tube observed by many researchers. However, the mechanism of this vibration is seldom analyzed. In this paper, the mechanism of cross-flow effects on fluidelastic instability of tube bundles was investigated. Analysis reveals that when the system reaches the critical state, there would be two forms, with two critical velocities, and thus two expressions for the critical velocities were obtained. Fluidelastic instability experiment and numerical analysis were conducted to obtain the critical velocity. And, if system damping is small, with increases of the flow velocity, the stability behavior of tube array changes. At a certain flow velocity, the stability of tube array reaches the first critical state, a dynamic bifurcation occurs. The tube array returns to a stable state with continues to increase the flow velocity. At another certain flow velocity, the stability of tube array reaches the second critical state, another dynamic bifurcation occurs. However, if system damping is big, there is only one critical state with increases the flow velocity. Compared the results of experiments to numerical analysis, it shows a good agreement.

Fluidelastic instability of a curved tube array in single phase cross flow

  • Kang-Hee Lee;Heung-Seok Kang;Du-Ho Hong;Jong-In Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1118-1124
    • /
    • 2023
  • Experimental study on the fluidelastic instability (FEI) of a curved tube bundle in single phase downward cross flow is investigated for the design qualification and analysis input preparation of helical coiled steam generator tubing. A 6×9 normal square curved tube array with equal and different vertical/horizontal pitch-to-diameter ratio was under-tested up to 6 m/s in term of gap flow velocity to measure the critical velocity for FEI. The critical velocity for FEI was measured at the turning point from the vibration amplitude plot along the gap flow velocity. Our test results were compared with straight tube results and published data in the design guideline. The applicability of the current design guidelines to a curved tube bundle is also assessed. We found that introducing frequency difference in a curved tube array increases the critical velocity for fluidelastic instability.

Vibration Characteristics of Steam Generator U-tubes with Defect (결함을 가진 증기발생기 U-튜브의 진동특성)

  • 조종철;정명조;김웅식;김효정;김태형
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.400-408
    • /
    • 2003
  • This paper investigates the vibration characteristics of steam generator (SG) U-tubes with defect. The operating SG shell-side flow field conditions for determining the fluidelastic instability parameters such as added mass are obtained from three-dimensional SG flow calculation. Modal analyses are performed for the U-tubes either with axial or circumferential flaw with different sizes. Special emphases are on the effects of flaw orientation and size on the modal and instability characteristics of tubes, which are expressed in terms of the natural frequency, corresponding mode shape and stability ratio. Also, addressed is the effect of the internal pressure on the vibration characteristics of the tube.

Vibration Characteristics of Heat Exchanger Tube Bundles in Two-Phase Cross-Flow (2상 횡유동을 받는 열교환기 관군의 진동특성)

  • 김범식;박태철
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.199-208
    • /
    • 1994
  • Two-phase cross-flow exists in many shell-tube heat exchangers such as nuclear steam generators, condensers and reboilers. An understanding of damping and of flow-induced vibration excitation mechanisms in necessary to avoid problems due to excessive tube vibration. In this paper, we present the results of experiments on normal-triangular tube bundles of pitch to tube diameter ratio, p/d, 1.22, 1.32 and 1.47. The bundle were subjected to air-water mixtures to simulate realistic mass fluxes and vapour qualities corresponding to void fractions from 5 to 99%. Damping, fluidelastic instability and turbulence- induced excitation are discussed. The behaivior of damping and two vibration mechanisms are different for intermittent flows from for bubbly flows. The effect of pitch to tube diameter ratio and void fraction is dominant on damping and fluidelastic instability.

  • PDF

Simulations of fluidelastic forces and fretting wear in U-bend tube bundles of steam generators: Effect of tube-support conditions

  • Hassan, Marwan;Mohany, Atef
    • Wind and Structures
    • /
    • v.23 no.2
    • /
    • pp.157-169
    • /
    • 2016
  • The structural integrity of tube bundles represents a major concern when dealing with high risk industries, such as nuclear steam generators, where the rupture of a tube or tubes will lead to the undesired mixing of the primary and secondary fluids. Flow-induced vibration is one of the major concerns that could compromise the structural integrity. The vibration is caused by fluid flow excitation. While there are several excitation mechanisms that could contribute to these vibrations, fluidelastic instability is generally regarded as the most severe. When this mechanism prevails, it could cause serious damage to tube arrays in a very short period of time. The tubes are therefore stiffened by means of supports to avoid these vibrations. To accommodate the thermal expansion of the tube, as well as to facilitate the installation of these tube bundles, clearances are allowed between the tubes and their supports. Progressive tube wear and chemical cleaning gradually increases the clearances between the tubes and their supports, which can lead to more frequent and severe tube/support impact and rubbing. These increased impacts can lead to tube damage due to fatigue and/or wear at the support locations. This paper presents simulations of a loosely supported multi-span U-bend tube subjected to turbulence and fluidelastic instability forces. The mathematical model for the loosely-supported tubes and the fluidelastic instability model is presented. The model is then utilized to simulate the nonlinear response of a U-bend tube with flat bar supports subjected to cross-flow. The effect of the support clearance as well as the support offset are investigated. Special attention is given to the tube/support interaction parameters that affect wear, such as impact and normal work rate.

The effects of tube bundle geometry on vibration in two-phase cross-flow (2상 횡유동에서 열교환기 관군 배치에 다른 진동특성 고찰)

  • 김범식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.681-687
    • /
    • 2001
  • Two-phase cross-flow exists in many shell-tube heat exchangers such as steam generators, condensers and reboilers. An understanding of flow-induced vibration excitation mechanism is necessary to avoid problems due to excessive tube vibration. This paper presents the results of a series of experiments done on tube bundles of different geometries subjected to two-phase cross-flow simulated by air-water mixtures. Normal(30$^{\circ}$) and rotated (60$^{\circ}$)triangular, and normal(90$^{\circ}$) and rotated (45$^{\circ}$) square tube bundle configurations of pitch-to-diameter ratio of 1.2 to 1.5 were tested over a range of mass fluxes from 0 to 1,000kg/$m^2$ㆍ s and void fraction from 0 to 100%. The effects of tube bundle geometry on vibration excitation mechanism such as fluidelastic instability and random turbulence, and on dynamic parameters such as damping and hydrodynamic mass are discussed. A lower pitch-to-diameter results in a higher hydrodynamic mass. The effect of tube bundle configurations on damping and random turbulence excitation is minor. The effect of pitch-to-diameter on the fluidelastic instability, however, is significant.

  • PDF

A Study on the Flow=Induced Vibration of Tube Array in Uniform Crossflow(II) On the Flow-Induced Vibration of Two Interfering Circular Cylinders in Tandem (균일 유동장내 튜브배열의 유동관련 진동에 관한 연구( II ) 직렬로 배열된 두 원주의 유동여기 진동에 관하여)

  • 이기백;김봉환;양장식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1518-1528
    • /
    • 1993
  • The wake-induced vibration and proximity-induced vibration of two interfering circular cylinders in tandem are investigated experimentally, using an elastically supported cylinder and a fixed cylinder in uniform crossflow. Dynamic responses and flow periodicity in wake are measured to investigate the effect of system parameters on aerodynamic instability. The parameters include the free stream wind velocity and the position of two interfering circular cylinders. The oscillating behavior of the amplitude of the elastically supported cylinder is changed by varying the position, the relative gap spacing between two interfering circular cylinders and the reduced velocities. In small gap spacing between the elastically supported cylinder located to upstream and the circular cylinder fixed to downstream, the fluidelastic instability is founded. The vibration amplitude decreases notably as gap spacing between two interfering circular cylinders becomes large. The dynamic behavior at g/D-4.0 is similar to that of the single circular cylinder.