• Title/Summary/Keyword: Fluid-structure interaction

Search Result 782, Processing Time 0.03 seconds

Intra-luminal Thrombus Reduces Stress in the Aneurysm Wall: Fluid-Structure Interaction in Pulsatile Flow

  • Kim S. Y.;Kim Y. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.147-149
    • /
    • 2003
  • Using computational fluid dynamics with the fluid-structure interaction, structural effects of intra-luminal thrombus were determined in thrombosed axisymmetric abdominal aorta aneurysm (AAA) models under pulsatile flow. Four different models, varying dilatations of the aneurysm and Young's moduli of intra-luminal thrombus, were defmed. Compared with unthrombosed AAA models, both von Mises stress and radial displacements in the aneurysm wall significantly decreased. Stiffer intra-luminal thrombus reduced von Mises stress in the aneUtysm wall. The present study supported that intra-luminal thrombus might reduce wall stress in the aneurysm.

  • PDF

FLUID-STRUCTURE INTERACTION ANALYSIS OF EXTERNAL GEAR PUMP (회전용적형 기어펌프의 유체-구조연동 전산해석)

  • Lee, J.H.;Kim, T.G.;Lee, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.83-85
    • /
    • 2010
  • A hydraulic gear pump is widely used in many industrial applications to provide both high pressure and high flow rate by physical displacement of finite volume of fluid with each revolution. In this study, two dimensional fluid-structure interaction simulation of gear pump flow was carried out to examine detailed complex flow patterns and structural stress distribution on rotors by using a commercial software ADINA. The effect of rotor clearance size on the flow characteristics, specially the temporal variation of velocity and pressure field, which is a main source of flow noise, also was investigated.

  • PDF

A Study on Fluid-Structure Interaction of a Hydrostatic Thrust Bearing (정압 스러스트 베어링의 유체-구조물 사이의 상호작용에 관한 연구)

  • Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.92-98
    • /
    • 2006
  • In this study, the behavior characteristics of a hydrostatic thrust bearing used in hydraulic equipment was analyzed using a commercial finite element program, ADINA. The solid domain was modeled with the fluid domain simultaneously to solve the fully coupled problem, because this is a problem where a fully coupled analysis is needed in order to model the fluid-structure interaction(FSI). The results such as bearing deformation, stress, film thickness and lifting bearing force were obtained through FSI analysis, and then they were compared with the results calculated from the classical method, a single step sequential analysis. It was found that the result difference between two analyses was increased according to the injection pressure. Therefore, in case of high pressure loading, it is desirable to conduct the FSI analysis to examine the deformation characteristics of a hydrostatic slipper bearing.

  • PDF

Fluid-Structural Interaction Analysis of Vertical Wind Turbine Combined with Antenna (안테나 결합형 수직 풍력터빈의 유체 구조 연성 해석)

  • Kim, Seong-Hwan;Kim, Ick-Tae
    • Journal of Advanced Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.237-243
    • /
    • 2018
  • The purpose of this study is to develop a vertical wind turbine with antenna structure in microgird environment. Computational fluid dynamics (CFD) was used to calculate the basic aerodynamic performance. The pressure resulted from CFD analysis has been mapped on the surface of wind turbine as load condition and the Fluid Structure Interaction (FSI) was applied. The stability of the wind turbine was confirmed by checking the deformation and internal stress of wind turbine by wind force.

Preconditioning technique for a simultaneous solution to wind-membrane interaction

  • Sun, Fang-jin;Gu, Ming
    • Wind and Structures
    • /
    • v.22 no.3
    • /
    • pp.349-368
    • /
    • 2016
  • A preconditioning technique is presented for a simultaneous solution to wind-membrane interaction. In the simultaneous equations, a linear elastic model was employed to deal with the fluid-structure data transfer at the interface. A Lagrange multiplier was introduced to impose the specified boundary conditions at the interface and strongly coupled simultaneous equations are derived after space and time discretization. An initial linear elastic model preconditioner and modified one were derived by treating the linearized elastic model equation as a saddle point problem, respectively. Accordingly, initial and modified fluid-structure interaction (FSI) preconditioner for the simultaneous equations were derived based on the initial and modified linear elastic model preconditioners, respectively. Wind-membrane interaction analysis by the proposed preconditioners, for two and three dimensional membranous structures respectively, was performed. Comparison was made between the performance of initial and modified preconditioners by comparing parameters such as iteration numbers, relative residuals and convergence in FSI computation. The results show that the proposed preconditioning technique greatly improves calculation accuracy and efficiency. The priority of the modified FSI preconditioner is verified. The proposed preconditioning technique provides an efficient solution procedure and paves the way for practical application of simultaneous solution for wind-structure interaction computation.

Coupled Vibration of Functionally Graded Cylindrical Shells Conveying Fluid (유체 유동을 고려한 경사기능재료 원통셸의 연성진동)

  • Kim, Young-Wann;Kim, Kyu-Ho;Wi, Eun-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1119-1125
    • /
    • 2009
  • The coupled fluid-structure interaction problem is analyzed using the theoretical method to investigate the coupled vibration characteristics of functionally graded material(FGM) cylindrical shells conveying an incompressible, inviscid fluid. Material properties are assumed to vary continuously through the thickness according to a power law distribution in terms of the volume fraction of the constituents. The steady flow of fluid is described by the classical potential flow theory. The motion of shell represented by the first order shear deformation theory(FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be taken into consideration by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with exiting results.

Numerical Study on the Pulsatile Blood Flow through a Bileaflet Mechanical Heart Valve and Leaflet Behavior Using Fluid-Structure Interaction (FSI) Technique (유체-고체 상호작용 (FSI)기법을 이용한 이엽기계식 인공심장판막을 지나는 혈액유동과 판첨거동에 관한 수치해석적 연구)

  • Choi, Choeng-Ryul;Kim, Chang-Nyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.3 s.24
    • /
    • pp.14-22
    • /
    • 2004
  • Bileaflet mechanical valves have the complications such as hemolysis and thromboembolism, leaflet damage, and leaflet break. These complications are related with the fluid velocity and shear stress characteristics of mechanical heart valves. The first aim of the current study is to introduce fluid-structure interaction method for calculation of unsteady and three-dimensional blood flow through bileaflet valve and leaflet behavior interacted with its flow, and to overcome the shortness of the previous studies, where the leaflet motion has been ignored or simplified, by using FSI method. A finite volume computational fluid dynamics code and a finite element structure dynamics code have been used concurrently to solve the flow and structure equations, respectively, to investigate the interaction between the blood flow and leaflet. As a result, it is observed that the leaflet is closing very slowly at the first stage of processing but it goes too fast at the last stage. And the results noted that the low pressure is formed behind leaflet to make the cavitation because of closing velocity three times faster than opening velocity. Also it is observed some fluttering phenomenon when the leaflet is completely opened. And the rebounce phenomenon due to the sudden pressure change of before and after the leaflet just before closing completely. The some of time-delay is presented between the inversion point of ventricle and aorta pressure and closing point of leaflet. The shear stress is bigger and the time of exposure is longer when the flow rate is maximum. So it is concluded that the distribution of shear stress at complete opening stage has big effect on the blood damage, and that the low-pressure region appeared behind leaflet at complete closing stage has also effect on the blood damage.

Static Aeroelastic analysis of Morphing flap wign through FSI analysis method (FSI를 이용한 모핑 플랩 날개의 정적 공탄성 해석)

  • Kim, Jonghwan;Ko, Seughee;Bae, Jaesung;Hwang, Jaihyuk
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.4
    • /
    • pp.1-6
    • /
    • 2012
  • The morphing flap wing has different structure unliked general wing structure. The actuated chord length of the morphing flap was more longer than conventional wing flap. In this reason, morphing flap wing structure was important to bending moment by aerodynamic lift force. In this study, through the fluid-structure interaction using computational fluid dynamics and structure finite element analysis to apply that the morphing flap wing's static aeroelastic stability analysis.

Investigation of structural responses of breakwaters for green water based on fluid-structure interaction analysis

  • Lee, Chi-Seung;Heo, Haeng-Sung;Kim, Young-Nam;Kim, Myung-Hyun;Kim, Sang-Hyun;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.83-95
    • /
    • 2012
  • In the present study, the structural response of breakwaters installed on container carriers against green water impact loads was numerically investigated on the basis of the fluid-structure interaction analysis. A series of numerical studies is carried out to induce breakwater collapse under such conditions, whereby a widely accepted fluid-structure interaction analysis technique is adopted to realistically consider the phenomenon of green water impact loads. In addition, the structural behaviour of these breakwaters under green water impact loads is investigated simultaneously throughout the transient analysis. A verification study of the numerical results is performed using data from actual collapse incidents of breakwaters on container carriers. On the basis of the results of a series of numerical analyses, the pressure distribution of green water was accurately predicted with respect to wave mass and velocity. It is expected that the proposed analytical methodology and predicted pressure distribution could be used as a practical guideline for the design of breakwaters on container carriers.

Effect of bidirectional internal flow on fluid.structure interaction dynamics of conveying marine riser model subject to shear current

  • Chen, Zheng-Shou;Kim, Wu-Joan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.57-70
    • /
    • 2012
  • This article presents a numerical investigation concerning the effect of two kinds of axially progressing internal flows (namely, upward and downward) on fluid.structure interaction (FSI) dynamics about a marine riser model which is subject to external shear current. The CAE technology behind the current research is a proposed FSI solution, which combines structural analysis software with CFD technology together. Efficiency validation for the CFD software was carried out first. It has been proved that the result from numerical simulations agrees well with the observation from relating model test cases in which the fluidity of internal flow is ignorable. After verifying the numerical code accuracy, simulations are conducted to study the vibration response that attributes to the internal progressive flow. It is found that the existence of internal flow does play an important role in determining the vibration mode (/dominant frequency) and the magnitude of instantaneous vibration amplitude. Since asymmetric curvature along the riser span emerges in the case of external shear current, the centrifugal and Coriolis accelerations owing to up- and downward internal progressive flows play different roles in determining the fluid.structure interaction response. The discrepancy between them becomes distinct, when the velocity ratio of internal flow against external shear current is relatively high.