• Title/Summary/Keyword: Fluid-sphere model

Search Result 17, Processing Time 0.022 seconds

Analysis of Flow Field around Multiple Fluid Spheres in the Low Knudsen Number Region (저 누드센 영역에서 다중 유체구 주위의 유동장 해석)

  • 정창훈;이규원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.733-743
    • /
    • 2003
  • The flow field in multiple fluid sphere systems was studied analytically. The expanded zero vorticity cell model based on Kuwabara's theory (1959) was applied and the effects of gas slippage at the collecting surface were considered. Also, the solid sphere system was extended to fluid sphere including the effects of the induced internal circulation inside the liquid droplet spheres or gas bubble systems. As a result, the obtained analytic solution was converged to the existing solutions for flow field around solid and bubble sphere systems with proper boundary conditions. Based on the resolved flow field, the terminal velocity around the collecting fluid spheres was obtained. Subsequently, this study evaluated the most general solution for flow field around the multiple fluid sphere systems. The obtained flow field in multiple fluid sphere could be used as a fundamental consideration of wet scrubber design and devices for removing particles by fluid-fluid interactions.

Characteristics of Backscattering of Harmful Algae Using Underwater Ultrasound (수중 초음파를 이용한 적조 플랑크톤의 후방산란 특성)

  • Kim Eunhye;Bok Tae-hoon;Na Jungyul;Paeng Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.8
    • /
    • pp.447-453
    • /
    • 2005
  • Laboratory measurements were performed in a uni-algae medium Cochlodinium polykrikoides (Phytoplankton, dinoflagellates) using an Underwater Ultrasound $(5\~15\;MHz)$ to study Characteristics of Acoustic Backscattering of Harmful algae. In an effort to detect the harmful algal scatterers with population density of less than 300 cells/ml that corresponds to the precaution stage of red tide, backscattered signals from various scatterer-density samples were obtained and analyzed. Correlations between volume backscattering strength (Sv) and population density (cells/ml) of scatterers in the medium have been investigated. Comparison of Volume Backscattering Strengths calculated with the fluid-sphere model [1] and the measured values showed an agreement.

Rarefied Gas Flows in Spiral Channels of a Disk-Type Drag Pump (원판형 드래그펌프내의 희박기체유동)

  • Hwang, Young-Kyu;Heo, Joons-Sik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.82-87
    • /
    • 2000
  • The direct simulation Monte Carlo (DSMC) method is applied to investigate the flow field of a disk-type drag pump. The pumping channels are cut on both sides of a rotating disk. The rotor has 10 Archimedes' spiral blades. In the present DSMC method, the variable hard sphere model is used as a molecular model, and the no time counter method is employed as a collision sampling technique. For simulation of diatomic gas flows, the Larsen-Borgnakke phenomenological model is adopted to redistribute the translational and internal energies.

  • PDF

NUMERICAL STUDY ON THE CHARACTERISTICS OF NON-NEWTONIAN FLUID FLOW OVER OBSTACLE (장애물 주위의 비뉴턴 유체의 유동특성에 관한 수치적 연구)

  • Kim, Hyung Min
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.61-67
    • /
    • 2014
  • Since the most of the existing non-Newtonian models are not adequate to apply to the lattmce Boltzmann method, it is a challenging task from both the theoretical and the numerical points of view. In this research the hydro-kinetic model was modified and applied to the 3-D moving sphere in the circular channel flow and the characteristics of the shear thinning effect by the HK-model was evaluated and the condition of ${\Gamma}$ in the model was suggested for the stable simulation to generate non-trivial prediction in three dimension strong shear flows. On the wall boundaries of circular channel the curved wall surface treatment with constant velocity condition was applied and the bounceback condition was applied on the sphere wall to simulate the relative motion of the sphere. The condition is adequate at the less blockage than 0.7 but It may need to apply a multi-scale concept of grid refinement at the narrow flow region. to obtain the stable numerical results.

On the Motion Characteristics of a Freely-Floating Sphere in a Water of Finite Depth (유한수심(有限水深)의 해상(海上)에서 규칙파(規則波)에 놓인 구(球)의 운동특성(運動特性))

  • Hang-Shoon,Choi;Sung-Kyun,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.1
    • /
    • pp.23-32
    • /
    • 1982
  • Herein the motion of a freely-floating sphere in a water of finite depth is analysed within the framework of a linear potential theory. A velocity potential describing fluid motion is generated by distributing pulsating sources and dipoles on the immersed surface of the sphere, without introducing an inner flow model. The potential becomes the solution of an integral equation of Fredholm's second type. In the light of the vertical axisymmetry of the flow, surface integrals reduce to line integrals, which are approximated by summation of the products of the integrand and the length of segments along the contour. Following this computational scheme the diffraction potential and the radiation potential are determined from the same algorithm of solving a set of simultaneous linear equations. Upon knowing values of the potentials hydrodynamic forces such as added mass, hydrodynamic damping and wave exciting forces are evaluated by the integrating pressure over the immersed surface of the sphere. It is found in the case of finite water depth that the hydrodynamic forces are much different from the corresponding ones in deep water. Accordingly motion response of the sphere in a water of finite depth displays a particular behavior both in a amplitude and phase.

  • PDF

Partitioning and Diffusion Properties of Hydrogen Gases In Porous Membranes Using the Nonoverlapping Sphere Model (비겹침 구형 모델을 이용한 세공 박막 내 수소 기체의 분산 및 확산 특성)

  • Suh, Soong-Hyuck;Ha, Ki-Ryong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.3
    • /
    • pp.119-125
    • /
    • 1998
  • The modified statistical-mechanical theory for dense fluid mixtures of rigid spheres has been applied to rigid sphere fluids in the nonoverlapping pore model. The resulting expressions for the partition coefficient and diffusivity illustrate the influence of steric hindrance on the thermodynamic and transport properties in such systems. The open membrane model without the size-exclusion and shielding effects shows considerable overestimation of the diffusion flux when the effective mean pore radii of the order of $20{\AA}$ or less are involved. Theoretical predictions investigated here were also compared with experimental data for hydrogen gases in inorganic porous membranes and it was observed a qualitative agreement in the low pressure limit.

  • PDF

A Computational Study of Aerodynamic Characteristics of Spinning Sphere (회전하는 구의 공력특성에 수치해석적 연구)

  • Deshpande, S.V.;Lee, Y.K.;Kim, H.D.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.223-226
    • /
    • 2006
  • Computational Study of a sphere subjected to free stream flow and simultaneously subjected to spinning motion is carried out. Three dimensional compressible Navier-Stokes equations are solved using fully implicit finite volume scheme. SST(Shear Stress Transport) $k-{\omega}$ turbulence model is used. Aerodynamic characteristics being affected are studied. Validation of the numerical process is done for the no spin condition. Variation of drag coefficient and shock wave strength with increase in spinning rate is reported. Changes in the wake region of the sphere with respect to spinning speed are also observed.

  • PDF

Numerical Analysis on Thermal Transpiration Flows for a Micro Pump (열천이 현상을 이용한 마이크로 펌프내의 희박기체유동 해석)

  • Heo, Joong-Sik;Lee, Jong-Chul;Hwang, Young-Kyu;Kim, Youn-J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.5
    • /
    • pp.27-33
    • /
    • 2007
  • Rarefied gas flows through two-dimensional micro channels are studied numerically for the performance optimization of a nanomembrane-based Knudsen compressor. The effects of the wall temperature distributions on the thermal transpiration flow patterns are examined. The flow has a pumping effect, and the mass flow rates through the channel are calculated. The results show that a steady one-way flow is induced for a wide range of the Knudsen number. The DSMC(direct simulation Monte Carlo) method with VHS(variable hard sphere) model and NTC(no time counter) techniques has been applied in this work to obtain numerical solutions. A critical element that drives Knudsen compressor Is the thermal transpiration membrane. The membranes are based on aerosol or machined aerogel. The aerogel is modeled as a single micro flow channel.

The detection of cavitation in hydraulic machines by use of ultrasonic signal analysis

  • Gruber, P.;Farhat, M.;Odermatt, P.;Etterlin, M.;Lerch, T.;Frei, M.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.264-273
    • /
    • 2015
  • This presentation describes an experimental approach for the detection of cavitation in hydraulic machines by use of ultrasonic signal analysis. Instead of using the high frequency pulses (typically 1MHz) only for transit time measurement different other signal characteristics are extracted from the individual signals and its correlation function with reference signals in order to gain knowledge of the water conditions. As the pulse repetition rate is high (typically 100Hz), statistical parameters can be extracted of the signals. The idea is to find patterns in the parameters by a classifier that can distinguish between the different water states. This classification scheme has been applied to different cavitation sections: a sphere in a water flow in circular tube at the HSLU in Lucerne, a NACA profile in a cavitation tunnel and two Francis model test turbines all at LMH in Lausanne. From the signal raw data several statistical parameters in the time and frequency domain as well as from the correlation function with reference signals have been determined. As classifiers two methods were used: neural feed forward networks and decision trees. For both classification methods realizations with lowest complexity as possible are of special interest. It is shown that two to three signal characteristics, two from the signal itself and one from the correlation function are in many cases sufficient for the detection capability. The final goal is to combine these results with operating point, vibration, acoustic emission and dynamic pressure information such that a distinction between dangerous and not dangerous cavitation is possible.

Transport of Settling Stones (투하석재의 이동)

  • 유동훈;선우중호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.2
    • /
    • pp.107-115
    • /
    • 1999
  • In order to develop a convenient method for the estimation of transport distance of settling stones in quiescent water or flowing water, introduced was the simple but relatively accurate equation of drag coefficient. The equation of drag coefficient introduced was confirmed to give relatively accurate evaluation for the drag force of smooth-surface sphere, and the effects of surface roughness and shape can be considered by adjusting empirical parameters. A theoretical equation has been developed for the settling velocity or settling distance of smooth-surface sphere in quiescent fluid, and the computation results have been obtained by adjusting the empirical parameter for the settling distance of stone in quiescent water. The 2nd order ordinary differential equation has been developed for the case of settling stones in flowing fluid, and a numerical model has been developed by using Runge-Kutta method for its solution. A number of cases have been tested by adjusting the empirical parameter.

  • PDF