• 제목/요약/키워드: Fluid velocity

검색결과 2,508건 처리시간 0.028초

Hydrodynamic forces on blocks and vertical wall on a step bottom

  • Mondal, Ramnarayan;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • 제30권5호
    • /
    • pp.485-497
    • /
    • 2020
  • A study, using potential water wave theory, is conducted on the oblique water wave motion over two fixed submerged rectangular blocks (breakwaters) placed over a finite step bottom. We have considered infinite and semi-infinite fluid domains. In both domains, the Fourier expansion method is employed to obtain the velocity potentials explicitly in terms of the infinite Fourier series. The unknown coefficients appearing in the velocity potentials are determined by the eigenfunction expansion matching method at the interfaces. The derived velocity potentials are used to compute the hydrodynamic horizontal and vertical forces acting on the submerged blocks for different values of block thickness, gap spacing between the two blocks, and submergence depth of the upper block from the mean free surface. In addition, the wave load on the vertical wall is computed in the case of the semi-infinite fluid domain for different values of blocks width and the incident wave angle. It is observed that the amplitudes of hydrodynamic forces are negligible for larger values of the wavenumber. Furthermore, the upper block experiences a higher hydrodynamic force than the lower block, regardless of the gap spacing, submergence depth, and block thickness.

연소 유동장의 PIV 가시화 측정과 제반 문제들 (Combustion Fluid Field Visualization Using PIV and Related Problems)

  • 김영한;윤영빈;정인석
    • 대한기계학회논문집B
    • /
    • 제24권4호
    • /
    • pp.504-511
    • /
    • 2000
  • PIV(Particle Image Velocimetry) is a recently developed technique for visualizing the fluid velocity fields. Because it has several advantages over the LDV(Laser Doppler Velocimetry), it became one of the most popular diagnostic tools in spite of its short history. However, its application to combustion is restricted by some problems such as flame illumination, scattered light refraction, particle density variation due to heat release, the combined effect of abrupt change in particle density and fluid velocity on flame contour, and thermophoresis which is particle lagging due to temperature gradient. These problems are expected to be originated from the non-continuous characteristics of flames and the limitations of particle dynamics. In the present study, these problems were considered for the visualization of the instantaneous coaxial hydrogen diffusion flame. And the instantaneous flame contour was detected using particle density difference. The visualized diffusion flame velocity field shows its turbulent and meandering nature. It was also observed that the flame is located inside the outer shear layer and flame geometry is largely influenced by the vorticity.

경계조건에 따른 다중벽 탄소나노튜브의 유체유발 불안정성 변화 (Flow-induced Instability of Multi-wall Carbon Nanotubes for Various Boundary Conditions)

  • 윤경재;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제20권9호
    • /
    • pp.805-815
    • /
    • 2010
  • This paper studies the influence of internal moving fluid and flow-induced structural instability of multi-wall carbon nanotubes conveying fluid. Detailed results are demonstrated for the variation of natural frequencies with flow velocity, and the flow-induced divergence and flutter instability characteristics of multi-wall carbon nanotubes conveying fluid and modelled as a thin-walled beam are investigated. Effects of various boundary conditions, Van der Waals forces, and non-classical transverse shear and rotary inertia are incorporated in this study. The governing equations and three different boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extended Galerkin's method which enables us to obtain more exact solutions compared with conventional Galerkin's method. This paper also presents the comparison between the characteristics of single-wall and multi-wall carbon nanotubes considering the effect of van der Waals forces. Variations of critical flow velocity for different boundary conditions of two-wall carbon nanotubes are investigated and pertinent conclusion is outlined.

어류 차단 스크린 설치에 따른 안동-임하호 연결터널 내 흐름변화에 대한 전산유체동역학 수치모의 (Computational Fluid Dynamics Simulation of Flow Pattern Change in the Andong-Imha Reservoir Connecting Tunnel Due to Fish Exclusion Screens)

  • 안상도
    • 한국물환경학회지
    • /
    • 제30권5호
    • /
    • pp.477-485
    • /
    • 2014
  • Imha Reservoir is connected to Andong Reservoir via a diversion tunnel allowing water to pass between. The diversion tunnel is equipped with screens to exclude exotic largemouth bass due to their predatory impacts on prey assemblages resulting in a degradation of species richness of local fish fauna and extinction of local fish populations in Korea. Flow pattern changes resulting from the fish screens and trash racks were investigated using a computational fluid dynamics (CFD) model. Numerical simulations showed that the decrease in the discharge capacity of the tunnel is approximately 8.6% and the headloss coefficient for fish screen at Andong intake tower was determined to be 1.5. In order not to allow the small fishes enough to pass through the wire openings enter into Imha Reservoir through tunnel, the velocity in the tunnel should be greater than 1.48 m/s which is a critical ascending velocity of the bass. This study suggests that it can keep the velocity higher enough to exclude largemouth bass when a gate opens with the condition of 1.0m difference in water stage between two reservoirs.

음향에너지를 이용한 내부 혼합형 이유체 분사노즐의 분무특성 (Spray Characteristics of Internal-Mixing Twin-Fluid Atomizer using Sonic Energy)

  • 조형건;강원수;석지권;이근선;이충원
    • 한국분무공학회지
    • /
    • 제4권3호
    • /
    • pp.32-41
    • /
    • 1999
  • In this research, internal-mixing twin-fluid atomizer using sonic energy is designed and manufactured. We are trying to intimate high efficiency twin-fluid atomizer to obtain good liquid atomization in the low pressure region. Define of geometric form of atomizer, characteristics of spray is influenced by position, depth and height variation of cavity resonator, variation of sound intensity and resonant sound frequency with liquid flow rate. The liquid atomization is promoted by multi-stage disintegration of mixing flow of gas with liquid and the optimum condition of position and depth of cavity resonator according to sonic energy is obtained from the condition at a=2.5mm and L=2mm. The velocity distribution of droplets shows negative value due to recirculation region at the center of axial, and as the radial direction distance is far, the velocity distribution of droplets decrease slowly after having a maximum value. However velocity and SMD show nearly uniform distribution at the down stream and as result compared to Nukiyama and Tanasawa's equation. atomization of mixing flow with air and liquid dispersing from the outlet of the nozzle is promoted by the effect of collision at the cavity resonator.

  • PDF

급수가열기 충격판 설계변경에 따른 동체감육 완화에 관한 유동해석 연구 (A Study on the Fluid Mixing Analysis for the Shell Wall Thinning Mitigation by Design Modification of a Feedwater Heater Impingement Baffle)

  • 김경훈;황경모;진태은
    • 한국시뮬레이션학회논문지
    • /
    • 제14권2호
    • /
    • pp.35-43
    • /
    • 2005
  • Feedwater heaters of many nuclear power plants have recently experienced wall thinning damage, which will increase as operating time progresses. As it is judged that the wall thinning damages have generated due to local fluid behavior around the impingement baffle installed in downstream of the high pressure turbine extraction steam line to avoid colliding directly with the tubes, numerical analyses using PHOENICS code were performed for two models with original clogged impingement baffle and modified multi-hole impingement baffle. To identify the relation between wall thinning and fluid behavior, the local velocity components in x-, y-, and z-directions based on the numerical analysis for the model with the clogged impingement baffle were compared with the wall thickness data by ultrasonic test. From the comparison of the numerical analysis results and the wall thickness data, the local velocity component only in the y-direction, and not in the x- and z-direction, was analogous to the wall thinning configuration. From the result of the numerical analysis for the modified impingement baffle to mitigate the shell wall thinning, it was identified that the shell wall thinning may be controlled by the reduction of the local velocity in the y-direction.

  • PDF

오일러 방법으로 원격 측정된 유체운동의 속도 산출과 정확도 평가 (Retrieval of Remotely Sensed Fluid Velocity and Esimation of Its Accuracy by Eulerian Measurement)

  • 김민성;이경훈;권병혁;윤홍주
    • 한국전자통신학회논문지
    • /
    • 제16권1호
    • /
    • pp.151-156
    • /
    • 2021
  • 지구 유체운동의 속력과 방향은 전자기파를 이용한 원격탐사 방법으로 측정된다. UHF 레이더와 GPS 존데를 이용하여 고도별 유체의 속도를 각각 오일러 측정 방법과 라그랑지 측정 방법으로 산출하였다. 대기의 운동 방향인 풍향은 바람이 불어오는 쪽으로 표시하고, 0° - 360°의 순환값을 사용하기 때문에 통계적 분석에 주의가 필요하다. 계산 조건의 설정에 따라 발생하는 오류를 제시하였고, 수정된 비교 결과의 정밀도는 400% 까지 향상하였다.

EFFECTS OF RADIATION AND HEAT GENERATION ON MHD AND PARABOLIC MOTION ON CASSON FLUIDS FLOW THROUGH A ROTATING POROUS MEDIUM IN A VERTICAL PLATE

  • J. PRAKASH;A. SELVARAJ
    • Journal of applied mathematics & informatics
    • /
    • 제42권3호
    • /
    • pp.607-623
    • /
    • 2024
  • This article studies the effects of heat generation/absorption and thermal radiation on the unsteady magnetohydrodynamic (MHD) Casson fluid flow past a vertical plate through rotating porous medium with constant temperature and mass diffusion. It is assumed that the plate temperature and concentration level are raised uniformly. For finding the exact solution, a set of non-dimensional partial differential equations is solved analytically using the Laplace transform technique. The influence of various non-dimensional parameters on the velocity are discussed, including the effects of the magnetic parameter M, heat generation/absorption Q, thermal radiation parameter R, Prandtl number Pr, Schmidt number Sc, permeability of porous medium parameter, Casson fluid parameter γ, on velocity, temperature, and concentration profiles, which are discussed through several figures. It is found that velocity, temperature, and concentration profiles in the case of heat generation parameter Q, Casson fluid parameter γ, thermal Grashof number Gr, mass Grashof number Gc, Permeability Porous medium parameter K, and time t have retarding effects. It is also seen that the magnetic field M, Thermal Radiation parameter R, Prandtl field Pr, Schmidt number Sc have reverse effects on it.

건물 풍력발전을 위한 집풍장치 성능 연구 (Performance Study of Wind Augmentation Device for Building-integrated Wind Power)

  • 신재렬;박재근;김한영;김대영
    • 한국유체기계학회 논문집
    • /
    • 제15권4호
    • /
    • pp.42-49
    • /
    • 2012
  • This study is performance estimation of wind augmentation device for BiWP(Building-integrated Wind Power) which recently attracts attention as a local power. various structures are installed on a rooftop of residential complex buildings. Changing a profile of these, we designed a configuration that is able to capture much air and increase exit velocity. To estimate wind augmented effect of this device, we compared numerical analysis results with wind tunnel test results. Results show that exit velocity is increased from 24% to 60% by wind augmented device on a rooftop of building.

Measurement of Fluid Dynamic Characteristics around Stenotic Obstruction in a Circular Channel

  • An, Jin-Hyo;Cheema, T.A.;Jeong, Seong-Ryong;Lee, Choon-Young;Kim, Gyu-Man;Park, Cheol-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권7호
    • /
    • pp.921-929
    • /
    • 2011
  • We measured experimentally the properties of fluid dynamics, velocity fields, and the pressure, around stenotic obstruction located inside a circular channel structure. Particle image velocimetry system was employed to obtain velocity fields at the central section of the circular channel in the streamwise direction. The stenosis model used was made of acrylic material with different stenotic aspect ratios. The working fluid was water and it was returned by a centrifugal pump system. Pressure measurements were carried out to validate the effect of a narrow passageway. Results showed that the acceleration of gap flow through stenotic obstruction and the pressure drop in the recirculation regime behind the stenosis model can be observed.