• Title/Summary/Keyword: Fluid transfer

Search Result 1,803, Processing Time 0.029 seconds

Power Enhancement Potential of a Low-Temperature Heat-Source-Driven Rankine Power Cycle by Transcritical Operation (초월임계 운전에 의한 저온 열원 랭킨 동력 사이클의 출력 향상 가능성)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Ra, Ho-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1343-1349
    • /
    • 2011
  • In this study, the power enhancement potential of a Rankine power cycle by transcritical operation was investigated by comparing the power of an HFC-134a subcritical cycle with that of an HFC-125 transcritical cycle, for a low-grade heat source with a temperature of about $100^{\circ}C$. For a fair comparison using different working fluids, each cycle was optimized by three design parameters from the viewpoint of power. In contrast to conventional approaches, the working fluid's heat transfer and pressure drop characteristics were considered in the present approach, with the aim of ensuring a more realistic comparison. The results showed that the HFC-125 transcritical cycle yields 9.4% more power than does the HFC-134a subcritical cycle under the simulation conditions considered in the present study.

Study on Heat Exchanging Characteristics of Automobile Exhaust Heat Recirculation Device (자동차 배기열 재순환장치의 열교환 특성에 관한 연구)

  • Hong, Young-Jun;Choi, Doo-Seuk;Jung, Young-Chul;Kim, Jong-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4302-4307
    • /
    • 2011
  • Recently, various technologies for the fuel efficiency improvement are being developed. The purpose of this study is to evaluate the heat exchanging performance of a exhaust heat recirculation device and to propose a model with optimized performance. The device has been designed to warm up engine coolant as quickly as possible using wasted exhaust heat. To achieve these goals, heat transfer characteristics has been analyzed using CFD for the flow direction effect and in/out location effect of coolant. A method improving the effectiveness of heat exchange has been proposed. As a result, the highest efficiency in heat exchange was observed on condition that exhaust heat affects the coolant directly with a separate flow path between exhaust gas and coolant and that coolant flow rate is relatively low.

Assessment of interhospital transport care for pediatric patients

  • Chaichotjinda, Krittiya;Chantra, Marut;Pandee, Uthen
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.5
    • /
    • pp.184-188
    • /
    • 2020
  • Background: Many critically ill patients require transfer to a higher-level hospital for complex medical care. Despite the publication of the American Academy of Pediatrics guidelines for pediatric interhospital transportation services and the establishment of many pediatric transport programs, adverse events during pediatric transport still occur. Purpose: To determine the incidence of adverse events occurring during pediatric transport and explore their complications and risk factors. Methods: This prospective observational study explored the adverse events that occurred during the interhospital transport of all pediatric patients referred to the pediatric intensive care unit of Ramathibodi Hospital between March 2016 and June 2017. Results: There were 122 pediatric transports to the unit. Adverse events occurred in 25 cases (22%). Physiologic deterioration occurred in 15 patients (60%). Most issues (11 events) involved circulatory problems causing patient hypotension and poor tissue perfusion requiring fluid resuscitation or inotropic administration on arrival at the unit. Respiratory complications were the second most common cause (4 events). Equipment-related adverse events occurred in 5 patients (20%). The common causes were accidental extubation and endotracheal tube displacement. Five patients had both physiologic deterioration and equipment-related adverse events. Regarding transport personnel, the group without complications more often had a physician escort than the group with complications (92% vs. 76%; relative risk, 2.4; P=0.028). Conclusion: The incidence of adverse events occurring during the transport of critically ill pediatric patients was 22%. Most events involved physiological deterioration. Escort personnel maybe the key to preventing and appropriately monitoring complications occurring during transport.

Molecular Cloning and Nucleotide Sequence of the Gene Encoding Fusion(F) Protein of the Thermostable Newcastle Disease Virus Isolated from a Diseased Pheasant (꿩에서 분리된 Newcastle Disease Virus 내열성주 (CBP)의 Fusion(F) 유전자 클론닝과 염기서열 분석)

  • Chang, Kyung-Soo;Jun, Moo-Hyung;Song, Hee-Jong;Kim, Kui-Hyun;Park, Jong-Hyeon
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.3
    • /
    • pp.233-245
    • /
    • 1998
  • The gene encoding F protein of CBP-1 strain, a heat-stable Newcastle disease virus (NDV) isolated from the diseased pheasants in Korea, was characterized by reverse transcription-polymerase chain reaction (RT-PCR), nucleotide and amino acid sequences. Virus RNA was prepared from the chorioallatoic fluid infected with NDV CBP-1 virus and cDNA was amplified by RT-PCR, cloned and sequenced to analyze. The PCR was sensitive as to detect the virus titer above $2^5$ hemagglutination unit. 1.7kb (1,707bp) size of the cDNA was amplified and cloned into BamHI site of pVL1393 Baculo transfer vector. The nucleotide sequences for F protein were determined by dye terminator cyclic sequencing using four pairs of primers, and 553 amino acid sequences were predicted. In comparison of the nucleotide sequence of F gene of CBP-1 with those of other NDV strains, the homology revealed 88.8%, 98.5% and 98.7% with Kyojungwon (KJW), Texas GB and Beaudette C strains, respectively. As the deduced 553 amino acid sequences of F protein of CBP-1 were compared with those of other NDV strains, the homology appeared 89.9%, 98.7% and 98.9% with KJW, Texas GB and Beaudette C strains, respectively. The putative protease cleavage site (112-116) was R-R-Q-K-R, indicating that CBP-1 strain is velogenic type. The amino acid sequences include 6 sites of N-asparagine-linked glycosylation and 13 cysteine residues. These data indicate that the genotype of CBP-1 strain is more closely associated with the strains of Texas GB and Beaudette C than KJW strain.

  • PDF

Numerical Study of Natural Convection in a Square Enclosure with an Inner Circular Cylinder for Rayleigh Number of 107 (107의 Rayleigh 수에서 원형 실린더가 존재하는 사각형 실린더 내부의 자연대류에 관한 수치적 연구)

  • Yu, Dong-Hun;Yoon, Hyun-Sik;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.739-747
    • /
    • 2010
  • Numerical calculations are carried out for evaluating the natural convection induced by the temperature difference between a hot inner circular cylinder and a cold outer square enclosure. A two-dimensional solution for unsteady natural convection is obtained by using the finite volume method to model an inner circular cylinder that was designed by using the immersed boundary method (IBM) for a Rayleigh number of $10^7$. In this study, we investigate the effect of the location ($\delta$) of the inner cylinder, which is located along the vertical central axis of the outer enclosure, on the heat transfer and fluid flow. The natural convection changes from unsteady to steady state depending on the $\delta$. The two critical lower bound and upper bound positions are ${\delta}_{C,L}$ = 0.05 and ${\delta}_{C,U}$ = 0.18, respectively. Within these defined bounds, the thermal and flow fields are in steady state.

Effects of Surface Roughness on Contact Angle of Nanofluid Droplet (표면조도가 나노유체 액적의 접촉각에 미치는 영향)

  • Kim, Yeung Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.559-566
    • /
    • 2013
  • The effects of solid surface roughness on the contact angle of a nanofluid droplet were experimentally investigated. The experiments were conducted using the solid surface of a 10 mm cubic copper block and the nanofluid of water mixed with CuO nanoparticles. The experimental results showed that the contact angles of nanofluid droplets were lower than those of water droplets and that the contact angle of the nanofluid droplet increased with the solid surface roughness. Furthermore, it was found that the contact angles of water droplets on the solid surface quenched by both water and the nanofluid were lower than those of water droplets on the pure solid surface. However, significant differences were not observed between the contact angles on the solid surfaces quenched by water and the nanofluid.

A Study on the Prediction of Self-absorption in Opposed Flames Using WSGGM-Based Spectral Model (파장별 회체가스중합모델을 이용한 대향류 화염에서의 복사 흡수 예측에 관한 연구)

  • Kim, Uk-Jung;Viskanta, Raymond;Gore, Jay Prabhakar;Zhu, Xuelei
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.600-609
    • /
    • 2001
  • WSGGM based low-resolution spectral model for calculating radiation transfer in combustion gases is applied to estimate self-absorption of radiation energy in one-dimensional opposed flow flames. Development of such a model is necessary in order to enable detailed chemistry-radiation interaction calculations including self-absorption. Database of band model parameters which can be applied to various one-dimensional opposed flow diffusion and partially premixed flames is created. For the validation of the model and database, low resolution spectral intensities at fuel exit side are calculated and compared with the results of a narrow band model with those based on the Curtis-Godson approximation. Good agreements have been found between them. The resulting radiation model is coupled to the OPPDIF code to calculate the self-absorption of radiant energy and compared with the results of an optically thin calculation and the results of a discrete ordinates method in conjunction with the statistical narrow band model. Significant self-absorption of radiation is found for the flames considered here particularly for the fuel side of the reacting zone. However, the self-absorption does not have significant effects on the flame structure in this case. Even in the case of the low velocity diffusion flame and the partially premixed flame of low equivalence ratio, the effects of self-absorption of radiation on the flame temperature and production of minor species are not significant.

Simulation study of DAF flotation basin using CFD (전산유체해석기법을 이용한 용존공기부상공정의 유동해석)

  • Park, Byungsung;Woo, Sungwoo;Park, Sungwon;Min, Jinhee;Lee, Woonyoung;You, Sunam;Jun, Gabjin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.261-272
    • /
    • 2013
  • Algae boom (Red tide) in south coastal area of Korea has been appeared several times during a decade. If algae boom appears in the desalination plant, media filter and UF filter are clogged quickly, and the plant should be shutdown. In general, Algae can be removed from water by flotation better than by sedimentation, because of the low density of algal cell. The purpose of this study conducts the CFD simulation of DAF flotation basin to apply the design of the dissolved air flotation with ball filter in the Test Bed for SWRO desalination plant. In this study, Eulerian-Eulerian multiphase model was applied to simulate the behavior of air bubbles and seawater. Density difference model and gravity were used. But de-sludge process and mass transfer between air bubbles and seawater were ignored. Main parameter is hydraulic loading rate which is varied from 20 m/hr to 27.5 m/hr. Geometry of flotation basin were changed to improve the DAF performance. According to the result of this study, the increase of hydraulic loading rate causes that the flow in the separation basin is widely affected and the concentration of air is increased. The flow pattern in the contact zone of flotation basin is greatly affected by the location of nozzle header. When the nozzle header was installed not the bottom of the contact zone but the above, the opportunity of contact between influent and recycle flow was increased.

Investigation of Cooling Performance of Injection Molds Using Pulsed Mold Temperature Control (가변 금형온도 제어기법을 적용한 사출금형의 냉각성능 고찰)

  • Sohn, Dong Hwi;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • In injection molding, the mold temperature is one of most important process parameters that affect the flow characteristics and part deformation. The mold temperature usually varies periodically owing to the effects of the hot polymer melt and the cold coolant as the molding cycle repeats. In this study, a pulsed mold temperature control was proposed to improve the part quality as well as the productivity by alternatively circulating hot water and cold water before and after the molding stage, respectively. Transient thermal-fluid coupled analyses were performed to investigate the heat transfer characteristics of the proposed pulsed mold heating and cooling system. The simulation results were then compared with those of the conventional mold cooling system in terms of the heating and cooling efficiencies of the proposed pulsed mold temperature control system.

Performance Analysis of Water-Water Heat Pump System of 100 kW Scale for Cooling Agricultural Facilities

  • Kang, Youn Ku;Ryou, Young Sun;Jang, Jae Kyung;Kim, Young Hwa;Kim, Jong Goo;Kang, Geum Chun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.34-38
    • /
    • 2014
  • Purpose: In this study, the performance of cooling system with the water-water heat pump system of 100kW scale made for cooling agricultural facilities, especially for horticultural facilities, was analyzed. It was intended to suggest performance criteria and performance improvement for the effective cooling system. Methods: The measuring instruments consisted of two flow meters, a power meter and thermocouples. An ultrasonic and a magnetic flow meter measured the flow rate of the water, which was equivalent to heat transfer fluid. The power meter measured electric power in kW consumed by the heat pump system. T-type thermocouples measured the temperature of each part of the heat pump system. All of measuring instruments were connected to the recorder to store all the data. Results: When the water temperature supplied into the evaporator of the heat pump system was over $20^{\circ}C$, the cooling Coefficient Of Performance(COP) of the system was higher than 3.0. As the water temperature supplied into the evaporator, gradually, lowered, the cooling COP, also, decreased, linearly. Especially, when the water temperature supplied into the evaporator was lower than $15^{\circ}C$, the cooling COP was lower below 2.5. Conclusions: In order to maintain the cooling COP higher than 3.0, we suggest that the water temperature supplied into evaporator from the thermal storage tank should be maintained above $20^{\circ}C$. Also, stratification in the thermal storage tank should be formed well and the circulating pumps and the pipe lines should be arranged in order for the relative low-temperature water to be stored in the lower part of the thermal storage tank.