DOI QR코드

DOI QR Code

Numerical Study of Natural Convection in a Square Enclosure with an Inner Circular Cylinder for Rayleigh Number of 107

107의 Rayleigh 수에서 원형 실린더가 존재하는 사각형 실린더 내부의 자연대류에 관한 수치적 연구

  • Yu, Dong-Hun (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Yoon, Hyun-Sik (Advanced Ship Engineering Research Center, Pusan Nat' Univ.) ;
  • Ha, Man-Yeong (School of Mechanical Engineering, Pusan Nat'l Univ.)
  • 유동훈 (부산대학교 기계공학부) ;
  • 윤현식 (부산대학교 첨단조선공학 연구센터) ;
  • 하만영 (부산대학교 기계공학부)
  • Received : 2008.10.10
  • Accepted : 2010.06.15
  • Published : 2010.08.01

Abstract

Numerical calculations are carried out for evaluating the natural convection induced by the temperature difference between a hot inner circular cylinder and a cold outer square enclosure. A two-dimensional solution for unsteady natural convection is obtained by using the finite volume method to model an inner circular cylinder that was designed by using the immersed boundary method (IBM) for a Rayleigh number of $10^7$. In this study, we investigate the effect of the location ($\delta$) of the inner cylinder, which is located along the vertical central axis of the outer enclosure, on the heat transfer and fluid flow. The natural convection changes from unsteady to steady state depending on the $\delta$. The two critical lower bound and upper bound positions are ${\delta}_{C,L}$ = 0.05 and ${\delta}_{C,U}$ = 0.18, respectively. Within these defined bounds, the thermal and flow fields are in steady state.

고온의 내부 원형 실린더가 존재하는 저온의 사각 밀폐계 사이의 온도차이에 의해 발생하는 자연대류에 관해 수치해석을 수행하였다. 본 연구는 내부의 원형 실린더를 표현하기 위해 유한 체적법에 기초한 가상 경계법을 사용하여 Ra = $10^7$ 에서 2 차원 비정상상태의 자연대류 현상에 대한 해를 얻었다. 더욱이 밀폐계의 수직 중심선에 따른 내부 원형 실린더의 위치 변화에 의한 열전달과 유동에 관한 영향을 연구하였다. 내부원형 실린더의 위치 변화에 따라 자연대류 현상은 비정상상태에서 정상상태로 변화 되었다. 연구 결과 두가지의 임계 위치를 얻을 수 있었다. 하부 경계는 0.05 인 지점이고 상부경계는 0.18 인 지점이다. 하부 경계와 상부 경계의 사이의 위치에서는 열 및 유동장이 정상상태임을 알 수 있었다.

Keywords

References

  1. Ha, M.Y., Kim, I.K., Yoon, H.S. and Lee, S.S., 2002, "Unsteady Fluid Flow and Temperature Fields in a Horizontal Enclosure with an Adiabatic Body," Physics of Fluids, Vol. 14, No. 9, pp. 3189-3202. https://doi.org/10.1063/1.1497168
  2. Ha, M.Y., Yoon, H.S., Balachandar, S., Kim, I., Lee, J.R. and Chun, H.H., 2002, "Two-Dimensional and Unsteady Natural Convection in a Horizontal Enclosure with a Square Body," Numerical Heat Transfer, Vol. 41, pp. 183-210. https://doi.org/10.1080/104077802317221393
  3. Lee, J.R. and Ha, M.Y., 2005, "A Numerical Study of Natural Convection in a Horizontal Enclosure with a Conducting Body," Int. J. Heat and Mass Transfer, Vol. 48, pp. 3308-3318. https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.026
  4. Lee, J.R. and Ha, M.Y., 2004, "Numerical Simulation of Natural Convection in Horizontal Enclosure with Heat-Generating Conducting Body," Trans. of the KSME A, Vol. 29, No. 4, pp. 441-452.
  5. Lee, J.R., Ha, M.Y., Balachandar, S., Yoon, H.S. and Lee, S.S., 2004, "Natural Convection in a Horizontal Layer of Fluid with a Periodic Array of Square Cylinders in the Interior," Physics of Fluids, Vol. 16, pp. 1273-1286. https://doi.org/10.1063/1.1694837
  6. Hyun, J.M. and Lee, J.W., 1989, "Numerical Solutions for Transient Natural Convection in a Square Cavity with Different Sidewall Temperatures," Int. J. Heat & Fluid Flow, Vol. 10, pp. 146-151. https://doi.org/10.1016/0142-727X(89)90009-X
  7. Misra, D. and Sarkar, A., 1997, "Finite Element Analysis of Conjugate Natural Convection in a Square Enclosure with a Conducting Vertical Wall," Comput. Methods Appl. Mech. Engrg., Vol. 141, pp. 205-219. https://doi.org/10.1016/S0045-7825(96)01109-7
  8. Wright, J.L., Jin, H., Hollands, K.G.T. and Naylor, D., 2006, "Flow Visualization of Natural Convection in a Tall, Air-Filled Vertical Cavity," Int. J. Heat and Mass Transfer, Vol. 49, pp. 889-904. https://doi.org/10.1016/j.ijheatmasstransfer.2005.06.045
  9. McBain, G.D., 1997, "Natural Convection with Unsaturated Humid Air in Vertical Cavities," Int. J. Heat and Mass Transfer, Vol. 40, pp. 3005-3012. https://doi.org/10.1016/S0017-9310(96)00371-7
  10. Jami, M., Mezrhab, A., Bouzidi, M. and Lallemand, P., 2006, "Lattice Boltzmann Method Applied to the Laminar Natural Convection in an Enclosure with a Heat-Generating Cylinder Conducting Body," Int. J. Thermal Sci., Available online.
  11. Ha, M.Y. and Jung, M.J., 2000, "A Numerical Study on Three-Dimensional Conjugate Heat Transfer of Natural Convection and Conduction in a Differentially Heated Cubic Enclosure with a Heat-Generating Cubic Conducting Body," Int. J. Heat and Mass Transfer, Vol. 43, pp. 4229-4248. https://doi.org/10.1016/S0017-9310(00)00063-6
  12. Asan, H., 2000, "Natural Convection in an Annulus Between Two Isothermal Concentric Square Ducts," Int. Comm. Heat Mass Transfer, Vol. 27, pp. 367-376. https://doi.org/10.1016/S0735-1933(00)00117-2
  13. Kumar De, A. and Dalal, A., 2006, "A Numerical Study of Natural Convection Around a Square, Horizontal, Heated Cylinder Placed in an Enclosure," Int. J. Heat and Mass Transfer, Available online.
  14. Ghaddar, N.K., 1992, "Natural Convection Heat Transfer Between a Uniformly Heated Cylindrical Element and Its Rectangular Enclosure," Int. J. Heat and Mass Transfer, Vol. 35, pp. 2327-2334. https://doi.org/10.1016/0017-9310(92)90075-4
  15. Cesini, G., Paroncini, M., Cortella, G. and Manzan, M., 1999, "Natural Convection from a Horizontal Cylinder in a Rectangular Cavity," Int. J. Heat and Mass Transfer, Vol. 42, pp. 1801-1811. https://doi.org/10.1016/S0017-9310(98)00266-X
  16. Moukalled, F. and Acharya, S., 1996, "Natural Convection in the Annulus Between Concentric Horizontal Circular and Square Cylinders," Journal of Thermophysics and Heat Transfer, Vol. 10, No. 3, pp.524-531. https://doi.org/10.2514/3.820
  17. Shu, C. and Zhu, Y.D., 2002, "Efficient Computation of Natural Convection in a Concentric Annulus Between an Outer Square Cylinder and an Inner Circular Cylinder," Int. J. Numer. Meth. Fluids, Vol. 38, pp. 429-445. https://doi.org/10.1002/fld.226
  18. Shu, C., Xue, H. and Zhu, Y. D., 2000, "Numerical Study of Natural Convection in an Eccentric Annulus Between a Square Outer Cylinder and a Circular Inner Cylinder Using DQ Method," Int. J. Heat and Mass Transfer, Vol. 44, pp. 3321-3333. https://doi.org/10.1016/S0017-9310(00)00357-4
  19. Kim, B.S., Lee, D.S., Ha, M.Y., Yoon, H.S., 2008, "A Numerical Study of Natural Convection in a Square Enclosure with a Circular Cylinder at Different Vertical Locations," Int. J. Heat Mass Transfer, Vol. 51, pp. 1888-1906. https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.033
  20. Kim, J. and Moin, P., 1985, "Application of a Fractional Step Method to Incompressible Navier-Stokes Equations," J. Comp. Physics, Vol. 59, pp. 308-323. https://doi.org/10.1016/0021-9991(85)90148-2
  21. Zang, Y., Street, R.L. and Koseff, J.R., 1994, "A Non-Staggered Grid, Fractional Step Method for Time-Dependent Incompressible Navier-Stokes Equations in Curvilinear Coordinates," J. Comp. Physics, Vol. 114, pp. 18-33. https://doi.org/10.1006/jcph.1994.1146
  22. Kim, J.W., Kim, D.J. and Choi, H.C., 2001, "An Immersed-Boundary Finite-Volume Method for Simulations of Flow in Complex Geometries," J. Comp. Physics, Vol. 171, pp. 132-150. https://doi.org/10.1006/jcph.2001.6778
  23. Kim, J.W. and Choi, H.C., 2004, "An Immersed-Boundary Finite-Volume Method for Simulation of Heat Transfer in Complex Geometries," KSME Int. J., Vol. 18, pp. 1026-1035.

Cited by

  1. A Numerical Study of Natural Convection in a Square Enclosure with two Hot Circular Cylinders vol.24, pp.3, 2012, https://doi.org/10.6110/KJACR.2012.24.3.247