• Title/Summary/Keyword: Fluid film journal bearing

Search Result 113, Processing Time 0.031 seconds

Study on the Mechanism of pad Fluttering and the Prevention of pad Fluttering with the Variation of Preload in a Tilting Pad Journal Bearing (틸팅패드 저널베어링의 패드 fluttering 메커니즘 및 예압 변경을 통한 패드 fluttering 방지에 관한 연구)

  • 박철현;김재실;하현천;양승헌
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.291-297
    • /
    • 2003
  • Fluid film tilting pad journal bearings are widely used for large steam turbines. However, bearing problems by pad fluttering, such as fatigue damage in the upper unloaded pad, the break of locking pins and the wear of pinholes etc., are frequently taken place in the actual steam turbines. The purpose of the present work is to investigate on the mechanism of pad fluttering and the prevention of pad fluttering with the variation of preload(m) in a tilting pad journal bearing. It is estimated that upper pad is easy to flutter because the film shape of upper pad is diverged one from the analysis of moment direction acting on pivot point. Effective preload range in order to be statically loaded pad under all operating conditions is suggested as m>0.5. Also, as a bearing that can be prevented pad fluttering, design modified bearing is suggested. For the adjustment in actual steam turbines, bearing and rotor dynamic analysis are performed to identify bearing characteristics and to verify the reliability of rotor-bearing system.

  • PDF

Analysis of a Journal and Thrust FDB and a Conical FDB in the Spindle Motor of a Computer Hard Disk Drive (HDD 스핀들 모터용 저널-스러스트 유체동압 베어링과 코니컬 유체동압 베어링의 특성해석비교)

  • Kim, Bum-Cho;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.478-483
    • /
    • 2005
  • This paper presents the comparison analysis of a Journal and thrust FDB (fluid dynamic bearing) and a conical FDB in a HDD spindle motor. The Reynolds equation is appropriately transformed to describe journal, thrust and conical bearing. Finite element method is applied to analyze the FDB by satisfying the continuity of mass and pressure at the interface between the hearings. The pressure field of the bearings is numerically approximated by applying the Reynolds boundary condition. The load and friction torque are obtained by integrating the pressure and the velocity gradient along the fluid film. The flying height of the spindle motor is measured to verify the proposed analytical result. This research shows that the conical bearing generates bigger load capacity and less friction torque than the journal and thrust bearing in a HDD spindle motor.

  • PDF

A Study on the Deformation Characteristics of a Slipper Bearing for High Pressure Piston Pump (고압 피스톤 펌프용 슬리퍼 베어링의 변형 특성에 관한 연구)

  • Koh, Sung-Wi;Kim, Byung-Tak
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.39-44
    • /
    • 2009
  • The hydrostatic slipper bearing is generally used in high pressure axial piston pumps to support the load generated from two surfaces which are sliding relatively at low speed. The object of the bearing is to remove the possibility of direct contact by maintenance of an adequate oil film thickness between two metal surfaces. Because the bearing performance is influenced by the bearing deformation, it is highly dependent on the injection pressure, the bearing surface profile and so on. In this study, the deformation characteristics of a hydrostatic slipper bearing is investigated according to the injection pressure by the finite element analysis. In the analysis, the special boundary condition to take the fluid-structure interaction (FSI) into account is used on the interactive surface. The results, such as bearing deformation, stress and lifting force, obtained from the fully coupled analysis are compared with those from the single step sequential method.

Noise Estimation of Oil Lubricated Journal Bearings (유체 윤활 저널 베어링의 소음 예측)

  • Rho, Byoung-Hoo;Kim, Kyung-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1058-1064
    • /
    • 2003
  • Noise estimating procedures of oil lubricated journal bearings are presented. Nonlinear analysis of rotor-bearing system including unbalance mass of the rotor is performed in order to obtain acoustical properties of the bearing. Acoustical properties of the bearing are investigated through frequency analysis of the pressure fluctuation of the fluid film calculated from the nonlinear analysis. Noise estimating procedures presented in this paper could aid in the evaluation and understanding of acoustical properties of oil lubricated journal bearings.

Rotordynamic Transient Analysis of Vertical Sea Water Lift Pump for FPSO Deep Well (FPSO 심정용 수직 해수펌프의 로터다이나믹 과도해석)

  • Kim, Byung-Ok;Yang, Sung-Jin;Lee, Myung-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.69-74
    • /
    • 2011
  • This paper deals with the detail rotordynamic analysis for the vertical rotor system as development of vertical sea water lift pump for FPSO deep well. In a vertical rotor system, since linearized stiffness and damping coefficients of fluid film bearing are no longer be valid, hence the transient response analysis considering a fluid film force for every journal position in the bearing needs to be required. In this study, the transient response analysis of the proposed vertical pump rotor system was carried out in dry-run and wet-run conditions, respectively. The results show that orbital vibration responses of the rotor system remain stable at rated speed and thereby operating reliability of the vertical rotor system is confirmed. To overcome complexity of calculation pr ocedure and time consuming calculation of transient analysis, the calculating technique of steady-state response analysis is also proposed. The results of steady-state response obtained by applying the proposed technique to the rotor system are good agreement with the reference results, that is, transient responses.

A Study on Dynamic Characteristics of a Rotor-Bearing System Supported by Actively Controlled Hydrodynamic Journal Bearing (능동 제어 베어링으로 지지된 축-베어링 시스템의 동특성에 관한 연구)

  • 노병후;김경웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.635-638
    • /
    • 2001
  • This paper presents the dynamic characteristics of r rotor-bearing system supported by an actively controlled hydrodynamic journal bearing. The proportional, derivative and integral controls are adopted for the control algorithm to control the hydrodynamic journal bearing with an axially groove. Also, the cavitation algorithm implementing the Jakobsson-Floberg-olsson boundery condition is adopted to predict cavitation regions in the fluid film more accurately than conventional analysis, which uses the Reynolds condition. The speed at onset of instability of a rotor-bearing system is increased by both proportional and derivative control of the bearing. The integral control has no effect on stability characteristics of hydrodynamic journal bearing. The PD-control is more effective than proportional or derivative control. Results show the active control of bearing can be adopted for the stability improvement of a rotor-bearing system.

  • PDF

Experimental Study on the Characteristics of the Pad Fluttering in a Tilting Pad Journal Bearing (틸팅패드 저어널베어링의 패드 Fluttering 특성에 관한 실험적 연구)

  • Yang, Seong-Heon;Kim, Cha-Seil;Ha, Hyun-Chen;Yang, Seong-Heon
    • Tribology and Lubricants
    • /
    • v.18 no.5
    • /
    • pp.357-363
    • /
    • 2002
  • The vibration characteristics of the pad fluttering in a fluid film tilting pad journal bearing (4-pad LBP) have been investigated experimentally under the different values of oil supply flow rate, bearing load and shaft speed. The vibration characteristics of the pad fluttering are estimated by measuring the time signal of circumferential distribution of the film thickness and the cascade plot of the response of the relative displacement between the bearing and the shaft. It is shown that the vibration frequency of the pad fluttering has a sub-synchronous frequency and almost does not change by the increase of shaft speed. However the vibration amplitude is increased by the increase of shaft speed. From those experimental results, pad fluttering can be thought of as a self-excited vibration. The incipient pad fluttering velocity is increased by the increase of oil supply flow rate and by the decrease of bearing load. It is observed that the vibration amplitude of the pad fluttering can be decrease by the control of supply oil flow rate effectively. And also It is known that the outbreak of pad fluttering does not concern with the shaft vibration.

Theoretical Analysis of Lubrication for the Hermetic Scroll Compressor with Back-Pressure Chamber (배압실을 갖는 밀폐형 스크롤 압축기의 윤활 특성에 관한 이론적 해석)

  • 심현해;김광호;이홍원;소순갑
    • Tribology and Lubricants
    • /
    • v.10 no.1
    • /
    • pp.69-77
    • /
    • 1994
  • Oil flow pass of hermetic scroll compressor with back pressure chamber was described. Dynamic analysis was preceded in order to obtain the loads on the lubricating contacts. The mobility method of dynamically loaded journal bearings was applied to the crank jornal bearing and lower main bearing, and they could be designed to operate under fluid film lubrication. From the consideration of their film thicknesses and oil flow rates, optimal bearing clearances or other bearing dimensions could be assessed. The major friction loss was calculated to be from the axial force between the two scrolls. Therefore, it was suggested that the designers should be careful to reduce the over-turning moment on the orbiting scroll.

Experimental Study on the Characteristics of the Pad Fluttering in a Tilting Pad Journal Bearing (틸팅패드 저어널베어링의 패드 Fluttering 특성에 관한 실험적 연구)

  • 양승헌;하현천;김재실
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.228-234
    • /
    • 2000
  • The vibration characteristics of the pad fluttering in a fluid film tilting pad journal bearing(4-pad LBP) have been investigated experimentally under the different values of oil supply flow rate, bearing load and shaft speed. The vibration characteristics of the pad fluttering are estimated by measuring the time signal of circumferential distribution of the film thickness and the cascade plot of the response of the relative displacement between the bearing and the shaft. It is shown that the vibration frequency of the pad fluttering has a sub-synchronous frequency and 31mos1 does not change by the increase of shaft speed. However the vibration amplitude is increased by the increase of shaft speed. From those experimental results, pad fluttering can be thought of as a self-excited vibration. The incipient pad fluttering velocity is increased by the increase of oil supply rate and by the decrease of bearing load. It is observed that the vibration amplitude of the pad fluttering can be decreased by the control of supply oil flow rate effectively. And also It is known that the outbreak of pad fluttering does not concern with the shaft vibration.

  • PDF

A Study on Dynamic Characteristics of Synchronously Controlled Hydrodynamic Journal Bearing (동기 제어되는 동압 베어링의 동특성에 관한 연구)

  • Rho, Byoung-Hoo;Kim, Kyung-Woong
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.311-315
    • /
    • 2001
  • In this paper synchronous whirl of bearing is employed as control algorithm of actively controlled hydrodynamic journal bearing to suppress the whirl instability and unbalance response of a rotor-bearing system. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than conventional analysis which uses the Reynolds condition. The stability and unbalance responses of a rotor-bearing system are investigated for various control gain and phase difference between the bearing and journal motion. It is shown that the unbalance response of a rotor-bearing system can be greatly improved by synchronous whirl of the bearing, and there is an optimum phase difference, which gives the minimum unbalance response of the system, at given operating condition. It is also found that the speed at onset of instability can be greatly increased by synchronous whirl of the bearing.

  • PDF