• 제목/요약/키워드: Fluid feedback

검색결과 104건 처리시간 0.033초

Stability Analysis of an Accelerator-Driven Fluid-Fueled Subcritical Reactor System

  • Kim, Do-Sam;Cho, Nam-Zin
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.90-95
    • /
    • 1997
  • In this work, linear dynamics of a circulating fluid-fueled subcritical reactor system with temperature feedback and external neutron source was modeled and examined. In a circulating fluid-fuel system, the stable region is slightly moved by a circulation fluid effect. The effects of subcriticality and temperature feedback coefficient on the reactor stability were tested by calculating frequency response of neutron density originated from reactivity perturbation or external source oscillation of system. The amplitude transfer function has a different shape near subcritical region due to the exponential term in the transfer function. The results of the study show that at a slightly subcritical region, low frequency oscillation in accelerator current or reactivity can be amplified depending on the temperature feedback. However, as the subcriticality increases, the oscillation becomes negligible regardless of the magnitude of the temperature feedback coefficient.

  • PDF

Sensory Evaluation of Friction and Viscosity Rendering with a Wearable 4 Degrees of Freedom Force Feedback Device Composed of Pneumatic Artificial Muscles and Magnetorheological Fluid Clutches

  • Okui, Manabu;Tanaka, Toshinari;Onozuka, Yuki;Nakamura, Taro
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권4호
    • /
    • pp.77-83
    • /
    • 2021
  • With the progress in virtual reality technology, various virtual objects can be displayed using head-mounted displays (HMD). However, force feedback sensations such as pushing against a virtual object are not possible with an HMD only. Focusing on force feedback, desktop-type devices are generally used, but the user cannot move in a virtual space because such devices are fixed on a desk. With a wearable force feedback device, users can move around while experiencing force feedback. Therefore, the authors have developed a wearable force feedback device using a magnetorheological fluid clutch and pneumatic rubber artificial muscle, aiming at presenting the elasticity, friction, and viscosity of an object. To date, we have developed a wearable four-degree-of-freedom (4-DOF) force feedback device and have quantitatively evaluated that it can present commanded elastic, frictional, and viscous forces to the end effector. However, sensory evaluation with a human has not been performed. In this paper, therefore, we conduct a sensory evaluation of the proposed method. In the experiment, frictional and viscous forces are rendered in a virtual space using a 4-DOF force feedback device. Subjects are asked to answer questions on a 1- to 7-point scale, from 1 (not at all) to 4 (neither) to 7 (strongly). The Wilcoxon signed rank test was used for all data, and answer 4 (neither) was used as compared standard data. The experimental results confirmed that the user could feel the presence or absence of viscous and frictional forces. However, the magnitude of those forces was not sensed correctly.

부하외란을 받는 편로드 유압실린더의 위치제어에 관한 연구 (A Study on Position Control of Hydraulic Single-Rod Cylinder Subjected to Load Disturbance)

  • 윤일로;염만오
    • 한국정밀공학회지
    • /
    • 제20권12호
    • /
    • pp.89-95
    • /
    • 2003
  • A PID controller integrated with a velocity feedback is designed for fluid power elevator model system in this study. In this case, for outside disturbance load a hydraulic cylinder and a pressure control valve are used. In this method overshoot is reduced and settling time becomes also shorter than the values achieved from the PID controller system only In conclusion a PID controller integrated with a velocity feedback is considered a suitable control method for fluid power elevator system.

Flow-Feedback for Pressure Fluctuation Mitigation and Pressure Recovery Improvement in a Conical Diffuser with Swirl

  • Tanasa, Constantin;Bosioc, Alin;Susan-Resiga, Romeo;Muntean, Sebastian
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.47-56
    • /
    • 2011
  • Our previous experimental and numerical investigations of decelerated swirling flows in conical diffusers have demonstrated that water jet injection along the symmetry axis mitigates the pressure fluctuations associated with the precessing vortex rope. However, for swirling flows similar to Francis turbines operated at partial discharge, the jet becomes effective when the jet discharge is larger than 10% from the turbine discharge, leading to large volumetric losses when the jet is supplied from upstream the runner. As a result, we introduce the flow-feedback approach for supplying the jet by using a fraction of the discharge collected downstream the conical diffuser. Experimental investigations on mitigating the pressure fluctuations generated by the precessing vortex rope and investigations of pressure recovery coefficient on the cone wall with and without flow-feedback method are presented.

차량 편의장치 통합 조작을 위한 MR 햅틱 장치 (MR Haptic Device for Integrated Control of Vehicle Comfort Systems)

  • 한영민;장국조
    • 한국융합학회논문지
    • /
    • 제8권12호
    • /
    • pp.291-298
    • /
    • 2017
  • 최근 차량내부에서는 운전과 직접적인 관련이 적은 다양한 편의장치들이 도입되고 있으며, 이러한 장치들의 조작환경을 하나로 통합하려는 노력이 시도되고 있다. 본 논문은 자동차 내의 다양한 편의장치에 대한 통합 조작환경을 구축하기 위해 자기유변유체(magnetorheological fluid; MR 유체)를 이용한 햅틱장치를 제안하고자 한다. 이를 위해 먼저 차량 편의 조작장치들이 갖는 회전과 상하 수직 운동을 동시에 구현할 수 있는 메커니즘을 고안하고 햅틱 기능을 부여하기 위해 MR 유체를 도입함으로써 하나의 장치로 다기능 조작이 가능한 햅틱 장치를 고안한다. 장치에서 발생하는 반향력에 대한 모델링에 근거하여 MR 햅틱 장치의 자료를 설계하고 시작품을 제작한다. 그리고 완성된 장치의 회전 및 수직 운동에 대한 응답 성능시험을 수행하여 제안된 모델을 검정한다. 또한 힘 반향 성능을 구현하기 위해 장치의 반향력 모델을 이용한 역모델 보상기(inverse model compensator)를 설계한다. 마지막으로 실제 자동차의 여러 편의 기능의 작동과정을 고려하여 햅틱 반향력 맵을 구축하고 제어기와 연동하여 제작된 햅틱 장치의 힘반향(force-feedback) 제어 성능을 평가한다.

VSC 유압유닛의 압력 추정기 및 제어기 설계에 관한 연구 (A Study on Estimator and Controller Design of VSC Hydraulic Unit)

  • 유승진;김범주;이교일
    • 유공압시스템학회논문집
    • /
    • 제2권4호
    • /
    • pp.7-13
    • /
    • 2005
  • This paper presents modeling and ostimator/controller design for the hydraulic system in Vehicle Stability Control(VSC) system. A nonlinear mathematical model of the VSC hydraulic system is proposed and its accuracy is experimentally verified. A brake pressure estimator is then designed based on the derived mathematical model of VSC hydraulic system. And a disturbance observer, which compensates the estimation error between the brake pressure and the computed brake pressure is also designed to enhance the accuracy of the estimator. The proposed controller has the form of a feedback controller and determines explicitly the on/off ratio of valves' driving PWM signals by means of making use of the simplified mathematical model in the VSC hydraulic system. The performance of the designed controller whose feedback signal is generated by the brake pressure estimator is validated through experimental results.

  • PDF

힘 반영 장치용 소행 MR 브레이크 (A Small MR Brake for Force Feedback Devices)

  • 김승종;조창현;이종민;황요하;김문상
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.169-172
    • /
    • 2004
  • This paper proposes a new MR(magneto-rheological) brake utilizing composite modes of MR fluid. Its basic structure and design scheme are almost the same with the conventional MR brake, but for slots in a rotating disk or shell. The slots enable the proposed MR brake to use a new mode, so-called, ‘direct cutting chain mode’as well as shear mode, which results in increasing the braking force(almost 150% compared to the case without slots). Some experimental results show that the proposed MR brake provide the sufficient braking force to be adopted for small portable force feedback devices.

  • PDF

압력제어용 직동 밸브를 이용한 전기.유압 서보시스템의 힘 제어 (Force Control of Electro-Hydraulic Servo System using Direct Drive Valve for Pressure Control)

  • 이창돈;이진걸
    • 유공압시스템학회논문집
    • /
    • 제1권3호
    • /
    • pp.14-19
    • /
    • 2004
  • The Direct Drive Valve used in this study contains a pressure-feedback-loop in itself, then it can eliminate nonlinearity such as the square-root-term in flow rate calculation and the change of bulk modulus of hydraulic oil. In this study, assuming that the dynamic characteristic of the DDV is modelled as a first order lag system, an parameter identification method using the input data and the output data is applied to obtain DDV's mathematical model. Then, a state feedback controller was designed to implement the force control of hydraulic system, and the control performance was evaluated.

  • PDF

PPF 제어기법을 적용한 전기점성유체가 함유된 보의 진동제어 (Vibration Control of Beam Containing ER Fluid Using PPF Control Scheme)

  • 윤신일;진도훈;윤문철
    • 한국공작기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.32-37
    • /
    • 2005
  • Several types of smart materials and control scheme are available to adjust the structure actively in various external disturbances. A control scheme was introduced for a specific material. But the effectiveness of the control scheme has some limitation according to the choice of the smart materials and the response of the structure. The ER(Electrorheological) fluid is adequate for a large control force, and the PZT(lead zirconate titanate) patches are suitable for small but arbitrary control force at any point of the structure. It can be used for active control of structure by changing the dynamic characteristics of the structure. But it has some difficulty in suppressing the excited vibration in broad band. To compensate this resonance of the controlled structure, a hybrid controller was constructed using PPF(Positive position feedback) control with PZT and ER fluid control.