• Title/Summary/Keyword: Fluid Vibration Analysis

Search Result 687, Processing Time 0.028 seconds

A Study on the Characteristics of Coupling Loss factor Associated with Fluid Loading (접수 구조물의 연성손실계수 변화에 관한 연구)

  • 류정수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.17-22
    • /
    • 2000
  • Statistical Energy Analysis(SEA) is an efficient tool to predict the broadband noise and vibration for the huge and complex structures such as aircraft and ships. To estimate the noise and vibration by using SEA accurately, the characteristics of SEA parameters associated with fluid loading have to be investigated. In this report, the fluid loaded coupling loss factors were calculated for an 'L' and 'T' type line connections and compared to the ones without fluid loading. Then, the vibration levels for steel box model with 'L' and 'T' type line connection were computed using the fluid loaded and no fluid loaded coupling loss factors, respectively. As a result, the calculated vibration levels of the model using the fluid loaded coupling loss factors were lower than those without fluid loading. As a conclusion, it is necessary to use the fluid loaded coupling loss factors for increasing the prediction accuracy on the noise and vibration of immersed structures.

  • PDF

Fluid Analysis of GGH Panel Elements considering Deposition Particles for Desulfurizing Equipments (침적 입자를 고려한 탈황설비용 GGH 판넬 요소의 유동해석)

  • Ryu, B.J.;Kim, J.H.;Kim, H.S.;Lee, K.S.;Koo, K.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.601-605
    • /
    • 2009
  • The paper deals with the proper design of GGH(gas-gas heater) panel elements of desulfurization equipments in a thermoelectric power plant. When fossil fuels such as coal, petroleum et cetera are burnt to ashes, sulfur oxide compounds are produced, and calcareous sludges are deposited at GGH panel elements. In this case, operation of a power plant equipments is interrupted, and a tremendous economic loss comes into existence. One of the purposes of the paper is to find flow velocity distributions and regions of depositions when calcareous sludges pile up on the GGH panel elements through the fluid analysis. In the fluid analysis, flow velocity and position distributions of particles between GGH panel elements are demonstrated according to time variation for ammonia and calcium hydroxide particles.

  • PDF

Transmission Loss and Back-pressure Analysis for Inner-separated Muffler (내부 분할된 단순확장관의 투과손실 및 배압 전산해석)

  • Jeong, Weuibong;Kim, Yeon Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.687-689
    • /
    • 2014
  • This paper deals with the optimal muffler model by using acoustic analysis and CFD(computational fluid dynamics) analysis. The complicated muffler model could be better noise reduction performance. However, it could be worse affected to back-pressure performance by pressure drop in working fluid. High back-pressure is caused to low system efficiency. Therefore, it is important for the muffler design to consider the pressure drop. The muffler models are changed their partition plate position. Acoustic power transmission loss(TL) and pressure drop of working fluid are calculated by using computational analysis and used to build database for finding their trends. The optimal muffler model in user-interested frequency range could be selected by analyzing this database.

  • PDF

Critical Fluid Velocity of Fluid-conveying Cantilevered Cylindrical Shells with Intermediate Support (중간 지지된 유체 유동 외팔형 원통셸의 임계유속)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.422-429
    • /
    • 2011
  • The critical fluid velocity of cantilevered cylindrical shells subjected to internal fluid flow is investigated in this study. The fluid-structure interaction is considered in the analysis. The cantilevered cylindrical shell is supported intermediately at an arbitrary axial position. The intermediate support is simulated by two types of artificial springs: translational and rotational spring. It is assumed that the artificial springs are placed continuously and uniformly on the middle surface of an intermediate support along the circumferential direction. The steady flow of fluid is described by the classical potential flow theory. The motion of shell is represented by the first order shear deformation theory (FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be considered by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with existing results.

Flow-Induced Vibration Analysis for Cascades with Stator-Rotor Interaction and Viscosity Effect (스테이터-로터 상호간섭 및 점성효과를 고려한 케스케이드의 유체유발 진동해석)

  • Oh, Se-Won;Kim, Dong-Hyun;Kim, Yu-Sung;Park, Oung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.848-854
    • /
    • 2006
  • In this study, a computational analysis system has been developed in order to investigate flow-induced vibration(FIV) phenomenon for general stator-rotor cascade configurations. Relative movement of the rotor with respect to stator is reflected by modeling independent two computational domains. Fluid domains are modeled using the unstructured grid system with dynamic moving and local deforming methods. Unsteady, Reynolds-averaged Navier-Stokes equations with one equation Spalart-Allmaras and two-equation SST $k-\omega$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used flow computing the coupled governing equations of the fluid-structure interaction problem. Detailed FIV responses for different flow conditions are presented with respect to time and vibration characteristics are also physically investigated in the time domain.

  • PDF

Fluid Dynamic Bearing Spindle Motors for DLP (DLP용 유체동압베어링 스핀들모터)

  • Kim, Yeung-Cheol;Seong, Se-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.2
    • /
    • pp.82-90
    • /
    • 2011
  • The small precision spindle motors in the high value-added products including the visible home appliances such as DLP projector require not only the energy conversion devices but also high efficiency, low vibration and sound operation. However, the spindle motors using the conventional ball bearing and sintered porous metal bearing have following problems, respectively: the vibration by the irregularity of balls and the short motor life cycle by the ball's abrasion and higher sound noises by dry contact between shaft and sleeve. In this paper, it is proposed that the spindle motor with a fluid dynamic bearing is suitable for the motor to drive the color wheel of the DLP(digital lightening processor) in the visible home appliances. The proposed spindle motor is composed of the fluid dynamic bearing with both the radial force and the thrust force. The fluid dynamic bearing is solved by the finite element analysis of the mechanical field with the Reynolds equations. The magnetic part of spindle motor, which is a type of Brushless DC Motor, is designed by the electro-magnetic field analysis coupled with the Maxwell equation. And the load capacity and the friction loss of fluid dynamic bearing are analyzed to bearing clearance variation by the fabrication error in designed motor. The design of the proposed motor is implemented by the load torque caused by the eccentricity and the unbalance of the fluid dynamic bearing when the motors are fabricated in error. The prototype of the motor with the fluid dynamic bearing is manufactured, and experiment results show the vibration, sound, and phase current at no load and color wheel load of the motors in comparison. The high performance characteristics with the low vibration, the low acoustic noise and the optimal mechanical structure are verified by the experimental results.

Damping due to Radiation Loss for Axial Vibration of the Pipe in a Fluid-filled Borehole (유체로 채워진 보어홀 속의 파이프 종진동에 있어서 방사손실에 의한 감쇠)

  • 이현엽;류황진
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.631-636
    • /
    • 1997
  • A method to estimate the radiatio power to the surrounding formation due to axial vibration of the pipe in a fluid-filled borehole has been developed, by using the propagation modes of stress wave in an infinitely-long and uniform drilling borehole surrounded by a radially-infinite homogeneous formation. Also, the equivalent damping coefficient for the axial vibration of the pipe has been derived. As an example, results for a real drilling borehole has been presented. The analysis of the elastic motion of the infinite formation which has cylidrical cavity is simplified with the geometric axisymmetry and the low-frequency assumption so that the analytic solution is obtained.

  • PDF

Nonlinear free vibration analysis of functionally graded carbon nanotube reinforced fluid-conveying pipe in thermal environment

  • Xu, Chen;Jing-Lei, Zhao;Gui-Lin, She;Yan, Jing;Hua-Yan, Pu;Jun, Luo
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.641-652
    • /
    • 2022
  • Fluid-conveying tubes are widely used to transport oil and natural gas in industries. As an advanced composite material, functionally graded carbon nanotube-reinforced composites (FG-CNTRC) have great potential to empower the industry. However, nonlinear free vibration of the FG-CNTRC fluid-conveying pipe has not been attempted in thermal environment. In this paper, the nonlinear free vibration characteristic of functionally graded nanocomposite fluid-conveying pipe reinforced by single-walled carbon nanotubes (SWNTs) in thermal environment is investigated. The SWCNTs gradient distributed in the thickness direction of the pipe forms different reinforcement patterns. The material properties of the FG-CNTRC are estimated by rule of mixture. A higher-order shear deformation theory and Hamilton's variational principle are employed to derive the motion equations incorporating the thermal and fluid effects. A two-step perturbation method is implemented to obtain the closed-form asymptotic solutions for these nonlinear partial differential equations. The nonlinear frequencies under several reinforcement patterns are presented and discussed. We conduct a series of studies aimed at revealing the effects of the flow velocity, the environment temperature, the inner-outer diameter ratio, and the carbon nanotube volume fraction on the nature frequency.

Stability Analysis of Pipe Conveying Fluid with Crack (크랙을 가진 유체유동 파이프의 안정성 해석)

  • Ahn, Tae-Su;Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.865-868
    • /
    • 2006
  • In this paper, a dynamic behavior(natural frequency) of a cracked simply supported pipe conveying fluid is presented. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid due to the coupled mode (modes combined) is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The stiffness of the spring depends on the crack severity and the geometry of the cracked section. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. This study will contribute to the safety test and stability estimation of structures of a cracked pipe conveying fluid.

  • PDF

Stability Analysis of Pipe Conveying Fluid with Crack (크랙을 가진 유체유동 파이프의 안정성 해석)

  • Son, In-Soo;Ahn, Tae-Su;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.10-16
    • /
    • 2007
  • In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid is investigated. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid due to the coupled mode(modes combined) is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Galerkin method. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The stiffness of the spring depends on the crack severity and the geometry of the cracked section. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. This results of study will contribute to the safety test and a stability estimation of the structures of a cracked pipe conveying fluid.