• Title/Summary/Keyword: Fluid Tank

Search Result 572, Processing Time 0.027 seconds

Performance of Oscillating Water Column type Wave Energy Converter in Oblique Waves (사파중 진동수주형 파력발전장치의 성능평가)

  • Jin, Jiyuan;Hyun, Beom-Soo;Hong, Keyyong;Liu, Zhen
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.182-188
    • /
    • 2014
  • In an oscillating water column (OWC)-type wave energy conversion system, the performance of the OWC chamber depends on the chamber shape, as well as the incident wave direction and pressure drop produced by the turbine. Although the previous studies on OWC chambers have focused on wave absorbing performance in ideal operating conditions, incident waves do not always arrive normally to the OWC chamber in real sea conditions, especially in fixed devices. The present study deals with experiments and numerical calculations to investigate the effects of wave direction on the performance of the OWC chamber. The experiments were carried out in a three-dimensional wave basin for five different wave directions, including the effect of turbine using the corresponding orifice. The wave elevation inside the chamber was measured at the center point under various incident wave conditions. The numerical study was conducted by using a numerical wave tank-based volume-of-fluid model to compare the results with experimental data and to reveal the detailed flows around the chamber.

An Empirical Study on the Thermal Performance and Dynamic Behavior of Wall Integrated Thermosiphon Solar Water Heater (벽체일체형 자연순환 태양열온수기의 동적거동과 열성능에 관한 실증연구)

  • Baek, Nam-Choon;Kim, Sung-Bum;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.25-35
    • /
    • 2016
  • In this study, the evaluation of the dynamic behavior and thermal performance of the "Façade integrated Natural circulation Solar Water Heating System" installed in the residential house was carried out. Experimental tests were performed during the all year around in the rural houses of $166m^2$ in size. Facade integrated solar collector of $5m^2$ were installed on the south-facing. Electrical heater of 1 kW capacity as an auxiliary heater was installed at the upper part of the heat storage tank. The analyzing results are as follows. (1) Monthly average solar fraction was 51 to 87% and yearly average value is 64%. (2) Hot water supply temperature in December which has the lowest solar altitude is 37 to $76^{\circ}C$. The highest working fluid temperature of solar collector in this period was below $84^{\circ}C$. The temperature difference of working fluid between the collector inlet and outlet has been shown to be around 9 to $26^{\circ}C$. (3) Overheating which is one of the biggest problems during summer did not appear at all, but rather had hot water supply temperature is rather low as $30{\sim}47^{\circ}C$ in summer than winter, which is supplied by a small solar load. The solar collecting temperature has been shown to maintain below $55^{\circ}C$. (5) The thermal performance of Facade integrated solar collector can be increase due to the reduction of heat loss to the back of the collector wall integration of the collector is reduced. As a conclusion, Facade integrated natural circulation type Solar Water Heating System is a well-functioning without any pumps or controllers, and it was found that the disadvantages of conventional solar water heaters, hot water or hot water system can be greatly improved.

Wave Forces Acting on Large Vertical Circular Cylinder and Consequent Wave Transformations by Full-Nonlinear Analysis Method after Wave Breaking (강비선형해석법에 의한 대형연직원주구조물에 작용하는 쇄파후의 파력 및 파랑변형)

  • Lee, Kwang-Ho;Shin, Dong-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.401-412
    • /
    • 2008
  • Simulations of three-dimensional numerical wave tank are performed to investigate wave force acting on a large cylindrical structure and consequent wave deformation, which are induced by bore after breaking waves. The numerical model is based on the three-dimensional Navier-Stokes equations with a finite-difference method combined with a volume of fluid(VOF) method, which is capable of tracking the complex free surface, including wave breaking. In order to promote wave breaking of the incident wave, the approach slope was built seaward of the structure with a constant slope and a large cylindrical structure was installed on a flat bed. The incident waves were broken on the approach slope or flat bed by its wave height. In the present study, all waves acting on the large cylindrical structure were limited to breaking bore after wave breaking. The effects of the position of the structure and the incident wave height on the wave force and wave transformations were mainly investigated with the concern of wave breaking. Further, the relations between the variation of wave energy by wave propagation after wave breaking and wave force acting on the structure were discussed to give the understanding of the full-linear wave-structure interactions in three-dimensional wave fields.

Quantitative Analysis of Quadrupole Noise Sources upon Quick Opening The Throttle (쓰로틀밸브 급개방시 기류소음의 4극음원에 대한 정량적 해석)

  • Kim Jaeheon;Cheong Cheolung;Kim SungTae;Lee Soogab
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.469-474
    • /
    • 2002
  • In recent years, modularization of engine parts has increased the application of plastic products in air intake systems. Plastic intake manifolds provide many advantages including reduced weight, contracted cost, and lower intake air temperatures. These manifolds, however, have some weakness when compared with customary aluminium intake manifolds, in that they have low sound transmission loss because of their lower material density. This low transmission loss of plastic intake manifolds causes several problems related to flow noise, especially when the throttle is opened quickly. The physical processes, responsible for this flow noise, include turbulent fluid motion and relative motion of the throttle to the airflow. The former is generated by high-speed airflow in the splits between the throttle valve and the inner-surface of the throttle body and surge-tank, which can be categorized into the quadrupole source. The latter induces the unsteady force on the flow, which can be classified into the dipole source. In this paper, the mechanism of noise generation from the turbulence is only investigated as a preliminary study. Stochastic noise source synthesis method is adopted for the analysis of turbulence-induced, i.e. quadrupole noise by throttle at quick opening state. The method consists of three procedures. The first step corresponds to the preliminary time-averaged Navier-Stokes computation with a $k-\varepsilon$ turbulence model providing mean flow field characteristics. The second step is the synthesis of time-dependent turbulent velocity field associated with quadrupole noise sources. The final step is devoted to the determination of acoustic source terms associated with turbulent velocity. For the first step, we used market available analysis tools such as STAR-CD, the trade names of fluid analysis tools available on the market. The steady state flows at three open angle of throttle valve, i.e. 20, 35 and 60 degree, are numerically analyzed. Then, time-dependent turbulent velocity fields are produced by using the stochastic model and the flow analysis results. Using this turbulent velocity field, the turbulence-originated noise sources, i.e. the self-noise and shear-noise sources are synthesized. Based on these numerical results, it is found that the origin of the turbulent flow and noise might be attributed to the process of formulation and the interaction of two vortex lines formed in the downstream of the throttle valve. These vortex lines are produced by the non-uniform splits between the throttle valve and inner cylinder surface. Based on the analysis, we present the low-noise design of the inner geometry of throttle body.

  • PDF

Numerical Analysis of Runup and Wave Force Acting on Coastal Revetment and Onshore Structure due to Tsunami (해안안벽과 육상구조물에서 지진해일파의 처오름 및 작용파력에 관한 수치해석)

  • Lee, Kwang Ho;Kim, Chang Hoon;Kim, Do Sam;Yeh, Harry;Hwang, Young Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.289-301
    • /
    • 2009
  • In this work, wave run-up heights and resultant wave forces on a vertical revetment due to tsunami (solitary wave) are investigated numerically using a numerical wave tank model called CADMAS-SURF (CDIT, 2001. Research and Development of Numerical Wave Channel (CADMAS-SURF). CDIT library, No. 12, Japan.), which is based on a 2-D Navier-Stokes solver, coupled to a volume of fluid (VOF) method. The third order approximate solution (Fenton, 1972. A ninth-order solution for the solitary wave. J. of Fluid Mech., Vol. 53, No.2, pp.257-271) is used to generate solitary waves and implemented in original CADMAS-SURF code. Numerical results of the wave profiles and forces are in good agreements with available experimental data. Using the numerical results, the regression curves determined from the least-square analysis are proposed, which can be used to determine the maximum wave run-up height and force on a vertical revetment due to tsunami. In addition, the capability of CADMAS-SURF is demonstrated for tsunami wave forces acting on an onshore structure using various configuration computations including the variations of the crown heights of the vertical wall and the position of the onshore structure. Based on the numerical results such as water level, velocity field and wave force, the direct effects of tsunami on an onshore structure are discussed.

Wave Absorbing Characteristics of a Horizontal Submerged Punching Plate (수평형 타공판의 소파특성)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.265-273
    • /
    • 2002
  • In this paper, wave absorbing characteristics of a horizontal submerged punching plate are investigated throughout the calculation and the experiment. The punching plate with the array of circular holes can force the flow to separate and to form eddies of high vorticity and cause significant energy loss. As an analytic tool, the linear water wave theory and the eigenfunction expansion method is applied. Darcy's law that the normal velocity of the fluid passing through the punching plate is linearly proportional to the pressure difference between two sides of the punching plate is assumed. The proportional constant called the porous coefficient is deeply dependent to the porosity. To obtain the relationship between the porosity and the porous coefficient the systematic model test for the punching plates with 6 different porosities is conducted at 2-dimensional wave tank. It is found that the porous coefficient is linearly proportional to the porosity(b=57.63P-0.9717). It is also noted that the optimal porosity value is near P=0.1 and the optimal range of submergence depth is $d/h\\leq0.2$ within entire frequency range.

A Study on Managing of Metal Loss by Flow-Accelerated Corrosion in the Secondary Piping of CANDU Nuclear Plants (CANDU형 원전 2차 배관의 침부식 감육 관리방법에 관한 연구)

  • 심상훈;송정수;윤기봉;황경모;진태은;이성호
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.18-25
    • /
    • 2002
  • One of the most serious concern in nuclear power plant piping maintenance is thickness reduction due to flow-accelerated corrosion (FAC). Since the FAC occurs under specific conditions of pH, dissolved oxygen, temperature, flow velocity, steam quality of the fluid and materials and geometry of the piping, a systematic approach is required for managing the FAC problem. In this study, construction of a secondary piping database, analyzing the FAC rate using the database and predicting the residual life was performed for a domestic CANDU nuclear power plant. Also FAC mechanism and factors affecting FAC were reviewed. By showing a case study on analysis for a pipe line between a separator and a flash tank, a procedure for managing FAC problem is suggested. The procedure proposed in this paper can be widely applied to the secondary piping of other domestic nuclear polder plants.

Volume Variation of Liquid Fuel by Seasonal, Regional Temperature Changes (계절적, 지역적 온도 변화에 따른 석유류 체적의 변화)

  • Lim, Ki Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.155-163
    • /
    • 2014
  • At gas stations, liquid fuels expand and contract in volume owing to temperature variations. In Korea, the ambient temperature varies between $-15^{\circ}C$ in winter and $35^{\circ}C$ in summer. The volume expansion coefficients of liquid fuels are about $0.1%/^{\circ}C$. To investigate this issue, we measured daily changes in fuel temperature and the delivered fuel temperature at gas stations. In addition, we scrutinized the daily, monthly, and annual changes in temperature over past 50 years in Korea. The results show that the temperature of the fuel in the storage tank was maintained at a stable value(summer or winter). Many factors, such as the surrounding conditions, fuel filling frequency, and gas station location, influence the delivered fuel temperature. The results of this study can be applied for establishing a national regulation and will contribute to fair transactions.

Wave Control by a Surface-Mounted Horizontal Membrane (수면 위에 고정된 수평막에 의한 파랑제어)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.83-91
    • /
    • 2004
  • The performance of wave control by a surface-mounted horizontal membrane is analyzed in the frame of linear potential theory. To employ the eigenfunction expansion method, the fluid domain is divided into two regions i.e. region without membrane and membrane-covered region. By matching the each solutions at boundaries of adjacent regions, the complete solution is obtained. The present analytical method solving the scattering problem directly gives the same results as Cho and Kim(1998)'s method solving the diffraction and the radiation problem separately. To verify the developed model, the model test with a surface-mounted horizontal membrane is conducted at the wave tank(36m${\times}$0.91m${\times}$l.22m). The analytic results are in good agreement with the experimental results. The reflection and transmission coefficients are investigated according to the change of membrane tension, length and incident frequencies.

Characteristics of Surface and Internal Wave Propagation through Density Stratification (밀도성층을 통과하는 수면파 및 내부파의 전파특성)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.819-830
    • /
    • 2016
  • Hydrodynamic characteristics of wave propagation through density stratification have not been identified in details. So this study conducted a numerical simulation using LES-WASS-3D ver. 2.0 for analysis of density current due to water temperature and salinity in order to analyze hydraulic characteristics under wave action in a two-layer density stratified fluid. For the validity and effectiveness of numerical wave tank used, it was compared and analyzed with the experiment to show waveform based on $3^{rd}$-order Stoke wave theory at the internal of a density stratification. Using the results obtained from numerical simulation, the surface and internal wave heights are reduced as the wave propagates in a two-layer density stratified water. And the surface or internal wave attenuation became more serious as the vorticities were increased by the velocity difference of wave propagation due to the upper-lower density difference around the interface of a density stratification. As well, the surface and internal wave attenuations became more serious with higher density difference and depth ratio between upper and lower layers when the wave propagates through a density stratification.