• Title/Summary/Keyword: Fluid Surface

Search Result 2,438, Processing Time 0.031 seconds

Torsional waves in fluid saturated porous layer clamped between two anisotropic media

  • Gupta, Shishir;Kundu, Santimoy;Pati, Prasenjit;Ahmed, Mostaid
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.645-657
    • /
    • 2018
  • The paper aims to analyze the behaviour of torsional type surface waves propagating through fluid saturated inhomogeneous porous media clamped between two inhomogeneous anisotropic media. We considered three types of inhomogeneities in upper anisotropic layer which varies exponentially, quadratically and hyperbolically with depth. The anisotropic half space inhomogeneity varies linearly with depth and intermediate layer is taken as inhomogeneous fluid saturated porous media with sinusoidal variation. Following Biot, the dispersion equation has been derived in a closed form which contains Whittaker's function and its derivative, for approximate result that have been expanded asymptotically up to second term. Possible particular cases have been established which are in perfect agreement with standard results and observe that when one of the upper layer vanishes and other layer is homogeneous isotropic over a homogeneous half space, the velocity of torsional type surface waves coincides with that of classical Love type wave. Comparative study has been made to identify the effects of various dimensionless parameters viz. inhomogeneity parameters, anisotropy parameters, porosity parameter, and initial stress parameters on the torsional wave propagation by means of graphs using MATLAB. The study has its own relevance in connection with the propagation of seismic waves in the earth where fluid saturated poroelastic layer is present.

Lie group analysis of MHD slip flow past a stretching surface: Effect of suction/injection

  • Waheed Iqbal;Mudassar Jalil;Mohamed A. Khadimallah;Hamdi Ayed;Ikram Ahmad;Rana Muhammad Akram Muntazir;Abir Mouldi;Muzamal Hussain;Javeria Umbreen;Essam Mohammed Banoqitah;Ghulam Murtaza;Bazal Fatima;Muhammad Taj;Zafer Iqbal
    • Advances in concrete construction
    • /
    • v.17 no.4
    • /
    • pp.179-185
    • /
    • 2024
  • Effects of MHD slip flow of second grade fluid with heat transfer are studied in the presence of heat source along permeable stretching surface. The governing boundary layer equations are complex and partial in nature. Using Lie group theory the suitable similarity transformation is derived. The system of PDEs is transformed to system of ODEs by applying these similarity transformations. The combined effect of Hartman number and porosity on velocity profile and the influence of slip parameter on fluid velocity is observed. It is found that enhancing the second grade parameter, boundary layer thickens and ultimately speedup the fluid. Also, the effect of suction/injection parameter on velocity profile is checked. An excellent agreement is noticed that assures the correctness of results. Effects of various physical parameters on the velocity and temperature profile are elaborated with graphs.

A Study on Influence of Design of Unit Cell for TPMS on Self-circulation Characteristics of Air (TPMS 단위체 설계에 따른 공기의 자가 순환 특성 변화 고찰)

  • J. C. Beom;K. K. Lee;D. G. Ahn
    • Transactions of Materials Processing
    • /
    • v.33 no.4
    • /
    • pp.241-247
    • /
    • 2024
  • The triply periodic minimum surface (TPMS) shape with a complex geometry can easily manufactured from additive manufacturing processes. The TPMS shape has a high surface-to-volume ratio. In addition, the TPMS shape increases the possibility of the self-circulation when the fluid flows inside the TPMS structure. Due to these reason, the performance of the fluid flow filter can be greatly improved when the TPMS structure is applied to the filter. The aim of this paper is to investigate the influence of the design of the unit cell for TPMS on self-circulation characteristics of air using computational fluid dynamics (CFD). From the results of the CFD, the effects of the shape and the dimension of the unit cell for TPMS on the self-circulation pattern and the pressure difference are examined. Finally, a proper design of the TPMS is discussed from the viewpoint of self-circulation of air.

Evaluation of Water Retentive Pavement as Mitigation Strategy for Urban Heat Island Using Computational Fluid Dynamics

  • Cortes, Aiza;Shimadera, Hikari;Matsuo, Tomohito;Kondo, Akira
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.4
    • /
    • pp.179-189
    • /
    • 2016
  • Here we evaluated the effect of using water retentive pavement or WRP made from fly ash as material for main street in a real city block. We coupled computational fluid dynamics and pavement transport (CFD-PT) model to examine energy balance in the building canopies and ground surface. Two cases of 24 h unsteady analysis were simulated: case 1 where asphalt was used as the pavement material of all ground surfaces and case 2 where WRP was used as main street material. We aim to (1) predict diurnal variation in air temperature, wind speed, ground surface temperature and water content; and (2) compare ground surface energy fluxes. Using the coupled CFD-PT model it was proven that WRP as pavement material for main street can cause a decrease in ground surface temperature. The most significant decrease occurred at 1200 JST when solar radiation was most intense, surface temperature decreased by $13.8^{\circ}C$. This surface temperature decrease also led to cooling of air temperature at 1.5 m above street surface. During this time, air temperature in case 2 decreased by $0.28^{\circ}C$. As the radiation weakens from 1600 JST to 2000 JST, evaporative cooling had also been minimal. Shadow effect, higher albedo and lower thermal conductivity of WRP also contributed to surface temperature decrease. The cooling of ground surface eventually led to air temperature decrease. The degree of air temperature decrease was proportional to the surface temperature decrease. In terms of energy balance, WRP caused a maximum increase in latent heat flux by up to $255W/m^2$ and a decrease in sensible heat flux by up to $465W/m^2$.

Analysis of Flow Field around Multiple Fluid Spheres in the Low Knudsen Number Region (저 누드센 영역에서 다중 유체구 주위의 유동장 해석)

  • 정창훈;이규원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.733-743
    • /
    • 2003
  • The flow field in multiple fluid sphere systems was studied analytically. The expanded zero vorticity cell model based on Kuwabara's theory (1959) was applied and the effects of gas slippage at the collecting surface were considered. Also, the solid sphere system was extended to fluid sphere including the effects of the induced internal circulation inside the liquid droplet spheres or gas bubble systems. As a result, the obtained analytic solution was converged to the existing solutions for flow field around solid and bubble sphere systems with proper boundary conditions. Based on the resolved flow field, the terminal velocity around the collecting fluid spheres was obtained. Subsequently, this study evaluated the most general solution for flow field around the multiple fluid sphere systems. The obtained flow field in multiple fluid sphere could be used as a fundamental consideration of wet scrubber design and devices for removing particles by fluid-fluid interactions.

Natural vibration characteristics of a clamped circular plate in contact with fluid

  • Jhung, Myung Jo;Choi, Young Hwan;Kim, Hho Jung;Jeong, Kyeong Hoon
    • Structural Engineering and Mechanics
    • /
    • v.21 no.2
    • /
    • pp.169-184
    • /
    • 2005
  • This study deals with the free vibration of a circular plate in contact with a fluid; submerged in fluid, beneath fluid or on fluid. An analytical method based on the finite Fourier-Bessel series expansion and Rayleigh-Ritz method is suggested. The proposed method is verified by the finite element analysis using commercial program with a good accuracy. The normalized natural frequencies are obtained in order to estimate the relative added mass effect of fluid on each vibration mode of the plate. Also, the location of plate coupled with fluid and the cases of free and bounded fluid surface are studied for the effect on the vibration characteristics.

Surface Treatment Effect on the Toilet by Numerical Modeling and High Speed CCD Camera (수치모델과 고속 CCD 카메라를 이용한 세변기 표면 처리 효과 특성 해석)

  • Roh, Ji-Hyun;Do, Woo-Ri;Yang, Won-Kyun;Joo, Jung-Hoon
    • Journal of Surface Science and Engineering
    • /
    • v.44 no.1
    • /
    • pp.32-37
    • /
    • 2011
  • Numerical analysis is done to investigate the effect of surface treatment of a toilet on the cleanness. The surface treatment using plasma for the super-hydrophobic surface expects the self-cleaning effect of the toilet seat cover for preventing the droplets with a great quantity of bacteria during the toilet flushing after evacuation. In this study, the fluid analysis in the toilet during the flushing was performed by an ultrahigh-speed CCD camera with 1,000 frame/sec and the numerical modeling. And the spattering phenomenon from the toilet surface during urine was analyzed quantitatively by CFD-ACE+ with a free surface model and a mixed model of two fluids. If the surface tension of the toilet surface is weak, many urine droplets after collision bounded in spite of considering the gravity. The turbulence generated by the change of angle and velocity of urine and the variation of the collision phenomenon from toilet surface were modeled numerically.

A comparison of the Effects of Intravenous Fluid Warming and Skin Surface Warming on Peri-operative Body Temperature and Acid Base Balance of Elderly Patients with Abdominal Surgery (수액가온요법과 피부가온요법이 개복술 환자의 저체온 예방에 미치는 효과 비교)

  • Park, Hyo-Sun;Yoon, Hae-Sang
    • Journal of Korean Academy of Nursing
    • /
    • v.37 no.7
    • /
    • pp.1061-1072
    • /
    • 2007
  • Purpose: The purpose of this study was to compare the effects of intravenous fluid warming and skin surface warming on peri-operative body temperature and acid base balance of abdominal surgical patients under general anesthesia. Method: Data collection was performed from January 4th, to May 31, 2004. The intravenous fluid warming(IFW) group(30 elderly patients) was warmed through an IV line by an Animec set to $37^{\circ}C$. The skin surface warming(SSW) group(30 elderly patients) was warmed by a circulating-water blanket set to $38^{\circ}C$ under the back and a 60W heating lamp 40 cm above the chest. The warming continued from induction of general anesthesia to two hours after completion of surgery. Collected data was analyzed using Repeated Measures ANOVA, and Bonferroni methods. Results: SSW was more effective than IFW in preventing hypothermia(p= .043), preventing a decrease of $HCO_3{^-}$(p= .000) and preventing base excess(p= .000) respectively. However, there was no difference in pH between the SSW and IFW(p= .401) groups. Conclusion: We conclude that skin surface warming is more effective in preventing hypothermia, and $HCO_3{^-}$ and base excess during general anesthesia, and returning to normal body temperature after surgery than intravenous fluid warming; however, skin surface warming wasn't able to sustain a normal body temperature in elderly patients undergoing abdominal surgery under general anesthesia.

Study on the Conjugate Heat Transfer Analysis Methodology of Thermal Barrier Coating on the Internal Cooled Nozzle (내부냉각노즐의 열차폐코팅을 위한 복합열전달 해석기법 연구)

  • Kim, Inkyom;Kim, Jinuk;Rhee, Dong-Ho;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.3
    • /
    • pp.38-45
    • /
    • 2015
  • In this study, two computational methodologies were compared to consider an effective conjugate heat transfer analysis technique for the cooled vane with thermal barrier coating. The first one is the physical modeling method of the TBC layer on the vane surface, which means solid volume of the TBC on the vane surface. The second one is the numerical modeling method of the TBC layer by putting the heat resistance interface condition on the surface between the fluid and solid domains, which means no physical layer on the vane surface. For those two methodologies, conjugate heat transfer analyses were conducted for the cooled vane with TBC layer having various thickness from 0.1 mm to 0.3 mm. Static pressure distributions for two cases show quite similar patterns in the overall region while the physical modeling shows quite a little difference around the throat area. Thermal analyses indicated that the metal temperature distributions are quite similar for both methods. The results show that the numerical modeling method can reduce the computational resources significantly and is quite suitable method to evaluate the overall performance of TBC even though it does not reflect the exact geometry and flow field characteristics on the vane surface.

Characteristics of Fluid Supply in Discontinuous Wheel Grinding (단속연삭의 유제공급 특성)

  • Kwak, Yong-Gil;Hong, Sun-Ik;Song, Ji-Bok;Koo, Yang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.857-861
    • /
    • 1997
  • In discontinuous wheel grinding, temperature is different form conventional grinding. The characteristics of discontinuous grinding with respect to various slotted wheel were compared with those of general grinding. Thermal conditions vary with intermittent ratio, direction of fluid supply for discontinous wheel. According to three direction of grinding fluid supply and intermittent ratio,temperature and surface roughness were analyzed.

  • PDF