• Title/Summary/Keyword: Fluid Space

Search Result 980, Processing Time 0.026 seconds

Fluid Accumulation in Preexisting Bullae (기존의 낭포성 병변에 발생한 공기-수면 음영)

  • In, Kwang-Ho;Kang, Kyung-Ho;Yoo, Se-Hwa
    • Tuberculosis and Respiratory Diseases
    • /
    • v.39 no.3
    • /
    • pp.278-281
    • /
    • 1992
  • Air fluid level in a large ring shadow poses a diagnostic problem. But a new development of fluid level in preexisting bullous lesion is another problem. A 60 year old man with chronic obstructive lung disease was noticed to have multiple bullae. A few years later fluid level was newly developed in some of the bullae. Fluid level persisted for several months and later completely filled the space. Surgical exploration revealed pus collection in the bullae and epidermoid carcinoma in the nearby bronchi.

  • PDF

Fundamental Study on Performance Experiment of ER Clutch (ER클러치의 성능실험에 관한 기초적 연구)

  • 김도태;장성철;염만오;김태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.66-71
    • /
    • 2001
  • In this work, an ER clutch has been constructed and its characteristics have been evaluated by adapting an electro-rheological fluid(ERF) as an operating medium. ER fluids are suspensions which show an abrupt increase in rheological properties under electric fields. An ER clutch system using ER fluid is a new conception device because an apparent viscosity of ER fluid can be changed by apply an electric field. As a first, Bingham properties of ER fluids are experimentally distilled as a function of electric field. We use the disk type ER clutch in which the ER fluid fills the annular space between a pair of coaxial disk electrodes and experiment results show that the measured revolution per minute was increased with the increase of the electric field. The ER fluid used in the present study consists of weight fraction 35% in zeolite suspended silicone oil.

  • PDF

Nonlinear thermal vibration of fluid infiltrated magneto piezo electric variable nonlocal FG nanobeam with voids

  • L. Rubine;R. Selvamani;F. Ebrahimi
    • Coupled systems mechanics
    • /
    • v.13 no.4
    • /
    • pp.337-357
    • /
    • 2024
  • This paper studies, the analysis of nonlinear thermal vibration of fluid-infiltrated FG nanobeam with voids. The effect of nonlinear thermal in a FG ceramic-metal nanobeam is determined using Murnaghan's model. Here the influence of fluids in the pores is investigated using the Skempton coefficient. Hamilton's principle is used to find the equation of motion of functionally graded nanobeam with the effect of refined higher-order state space strain gradient theory (SSSGT). Numerical solutions of the FG nanobeam are employed using Navier's solution. These solutions are validated against the impact of various parameters, including imperfection ratio, fluid viscosity, fluid velocity, amplitude, and piezoelectric strain, on the behavior of the fluid-infiltrated porous FG nanobeam.

Simulations of Capacitively Coupled Plasmas Between Unequal-sized Powered and Grounded Electrodes Using One- and Two-dimensional Fluid Models

  • So, Soon-Youl
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.220-229
    • /
    • 2004
  • We have examined a technique of one-dimensional (1D) fluid modeling for radio-frequency Ar capacitively coupled plasmas (CCP) between unequal-sized powered and grounded electrodes. In order to simulate a practical CCP reactor configuration with a grounded side wall by the 1D model, it has been assumed that the discharge space has a conic frustum shape; the grounded electrode is larger than the powered one and the discharge space expands with the distance from the powered electrode. In this paper, we focus on how much a 1D model can approximate a 2D model and evaluate their comparisons. The plasma density calculated by the 1D model has been compared with that by a two-dimensional (2D) fluid model, and a qualitative agreement between them has been obtained. In addition, 1D and 2D calculation results for another reactor configuration with equal-sized electrodes have also been presented together for comparison. In the discussion, four CCP models, which are 1D and 2D models with symmetric and asymmetric geometries, are compared with each other and the DC self-bias voltage has been focused on as a characteristic property that reflects the unequal electrode surface areas. Reactor configuration and experimental parameters, which the self-bias depends on, have been investigated to develop the ID modeling for reactor geometry with unequal-sized electrodes.

Interrelation of Yin and Yang in Action Potential of Cell Membrane (세포막 활동전압에서 음양(陰陽)의 상호관계)

  • Park, Sun Young;Kim, Ho Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.5
    • /
    • pp.563-569
    • /
    • 2013
  • This study was undertaken to apply the yin-yang theory in action potential. In order to apply the yin-yang theory in action potential, nature of yin and yang, interrelation of yin and yang and action potential in cell were reviewed. According to the yin-yang theory, inner cellular space corresponds to yin, but outer cellular space corresponds to yang. If we classify ions in intracellular fluid or extracellular fluid by nature of yin and yang, potassium(K+) corresponds to yang within yin(陰中之陽), protein(Pr-) corresponds to yin within yin(陰中之陰) in intracellular fluid, and sodium(Na+) corresponds to yang within yang(陽中之陽), chloride(Cl-) corresponds to yin within yang(陽中之陰) in extracellular fluid. Double donnan equilibrium and equilibrium potential were caused by intracellular anion(Pr-) and extracellular cation(Na+) are related with mutual rooting of yin and yang(陰陽互根) and opposition of yin and yang(陰陽對立). The influx and efflux of ion through cell membrane means waxing and waning of yin and yang(陰陽消長), the change of membrane potential means yin-yang conversion(陰陽轉化) during action potential.

Real-time Simulation Technique for Visual-Haptic Interaction between SPH-based Fluid Media and Soluble Solids (SPH 기반의 유체 및 용해성 강체에 대한 시각-촉각 융합 상호작용 시뮬레이션)

  • Kim, Seokyeol;Park, Jinah
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.32-40
    • /
    • 2017
  • Interaction between fluid and a rigid object is frequently observed in everyday life. However, it is difficult to simulate their interaction as the medium and the object have different representations. One of the challenging issues arises especially in handling deformation of the object visually as well as rendering haptic feedback. In this paper, we propose a real-time simulation technique for multimodal interaction between particle-based fluids and soluble solids. We have developed the dissolution behavior model of solids, which is discretized based on the idea of smoothed particle hydrodynamics, and the changes in physical properties accompanying dissolution is immediately reflected to the object. The user is allowed to intervene in the simulation environment anytime by manipulating the solid object, where both visual and haptic feedback are delivered to the user on the fly. For immersive visualization, we also adopt the screen space fluid rendering technique which can balance realism and performance.

NUMERICAL CALCULATION OF TWO FLUID SOLAR WIND MODEL

  • KIM S.-J.;KIM K.-S.;MOON Y.-J.;CRO K.-S.;PARK Y. D.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • We have developed a two fluid solar wind model from the Sun to 1 AU. Its basic equations are mass, momentum and energy conservations. In these equations, we include a wave mechanism of heating the corona and accelerating the wind. The two fluid model takes into account the power spectrum of Alfvenic wave fluctuation. Model computations have been made to fit observational constraints such as electron($T_e$) and proton($T_p$) temperatures and solar wind speed(V) at 1 AU. As a result, we obtained physical quantities of solar wind as follows: $T_e$ is $7.4{\times}10^5$ K and density(n) is $1.7 {\times}10^7\;cm^{-3}$ in the corona. At 1 AU $T_e$ is $2.1 {\times} 10^5$ K and n is $0.3 cm^{-3}$, and V is $511 km\;s^{-1}$. Our model well explains the heating of protons in the corona and the acceleration of the solar wind.

Torsional waves in fluid saturated porous layer clamped between two anisotropic media

  • Gupta, Shishir;Kundu, Santimoy;Pati, Prasenjit;Ahmed, Mostaid
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.645-657
    • /
    • 2018
  • The paper aims to analyze the behaviour of torsional type surface waves propagating through fluid saturated inhomogeneous porous media clamped between two inhomogeneous anisotropic media. We considered three types of inhomogeneities in upper anisotropic layer which varies exponentially, quadratically and hyperbolically with depth. The anisotropic half space inhomogeneity varies linearly with depth and intermediate layer is taken as inhomogeneous fluid saturated porous media with sinusoidal variation. Following Biot, the dispersion equation has been derived in a closed form which contains Whittaker's function and its derivative, for approximate result that have been expanded asymptotically up to second term. Possible particular cases have been established which are in perfect agreement with standard results and observe that when one of the upper layer vanishes and other layer is homogeneous isotropic over a homogeneous half space, the velocity of torsional type surface waves coincides with that of classical Love type wave. Comparative study has been made to identify the effects of various dimensionless parameters viz. inhomogeneity parameters, anisotropy parameters, porosity parameter, and initial stress parameters on the torsional wave propagation by means of graphs using MATLAB. The study has its own relevance in connection with the propagation of seismic waves in the earth where fluid saturated poroelastic layer is present.

Shock compression of condensed matter using multi-material Reactive Ghost Fluid method : development and application (충격파와 연소 현상 하에서의 다중 물질 해석을 위한 Reactive Ghost Fluid 기법 개발 및 응용)

  • Kim, Ki-Hong;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.571-579
    • /
    • 2009
  • For the flow analysis of reactive compressible media involving energetic materials and metallic confinements, a Hydro-SCCM (Shock Compression of Condensed Matter) tool is developed for handling multi-physics shock analysis of energetics and inerts. The highly energetic flows give rise to the strong non-linear shock waves and the high strain rate deformation of compressible boundaries at high pressure and temperature. For handling the large gradients associated with these complex flows in the condensed phase as well as in the reactive gaseous phase, a new Eulerian multi-fluid method is formulated. Mathematical formulation of explosive dynamics involving condensed matter is explained with an emphasis on validating and application of hydro-SCCM to a series of problems of high speed multimaterial dynamics in nature.

Fluid Force Suppression of a Square Prism near Plane Wall (벽면근처에 놓인 정방형주의 유체력 제어)

  • Kim, K.S.;Ro, Ki-Deok;Kang, M.H.;Byun, Y.S.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.61-62
    • /
    • 2006
  • The suppression of fluid force acting on a square prism near plane wall was studied by attaching fences on the comers of the prism. The height of the fence was 10% of the square width and the range of Reynolds number considered was $Re=2.0{\times}10^4$. The experimental parameters were the attaching position and numbers of fences, the space ratios $G/B(G/B=0.1{\sim}1.2)$ between prism and plane wall. The average drag coefficients were increased and the average hit coefficients were decreased and increased with the space ratios foulard plane wall. The drag of the prism was reduced average 7.6% with the space ratios by attaching the normal fence at the rear and upper comer and the horizontal normal fence at the rear and lower corner on the prism.

  • PDF