• Title/Summary/Keyword: Fluid Mixing

Search Result 556, Processing Time 0.028 seconds

Flow and Mixing Characteristics in an Agitator with a Draught Tube (드래프트 관이 장착된 교반기 내의 유동 및 혼합특성 연구)

  • Hwang, Jung-Hoon;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.1 s.40
    • /
    • pp.56-63
    • /
    • 2007
  • Because the mixing efficiency is influenced remarkably by varying the geometrical configurations, the study of flow characteristics inside the mechanical agitator is very important to improve the performances. The draught tube in the agitator makes intermixing between the screw and tube by interrupting radial flow, and it makes circulation region in a mixing chamber. In general, the helical screw agitator with a draught tube (HSA) is proved more efficient to mix than the others. Consequently, such as the shapes of helical screw, number of pitches and the variation of angular velocity are the main parameters for improving the capacity of HSA. And also the suspension of the solid particles in the agitator can be determined these parameters. The rate of solids suspension in the mixing chamber was quantified with a statistical average value, of. Numerical analyses were carried out, using a commercial CFD code, Fluent, to obtain the velocity, pressure and particle distributions under steady, laminar flow and no-slip conditions. Results are graphically depicted with various parameters.

Experiment Study on the Spray Characteristics according to the Design Factors and SMD Measuring Direction of Y-jet Nozzle (Y-jet 노즐의 설계인자와 SMD 측정방향에 따른 분무특성의 실험 연구)

  • Lee, Sang Ji;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.205-211
    • /
    • 2018
  • Y-jet nozzle has various advantages over other twin-fluid nozzles and are used in industrial boilers. However, it costs large energy consumption because of assisted air and its design is complex. The Y-jet nozzle is consisted of a liquid and gas port and a mixing chamber. The diameter of the port and the length of the mixing chamber greatly affect spray and atomization characteristics, therefore, they are the most important factors in nozzle design. In this study, The experimental setup is consisted of a laboratory scale spray system. The characteristics of the Y-jet nozzle according to the design parameters were observed. As a result, it was found that the length of the mixing chamber did not have effect on the flow rate and the choking condition. The droplet size was measured using a Malvern type measuring device. In addition, measurements were conducted in the front and the right directions of the nozzles. Based on the results, the SMD View Ratio is defined. It is the asymmetrical design characteristics of the Y-jet nozzle.

Experimental Study on Physical Characteristics of MR Fluid along Temperature Conditions (온도조건에 따른 MR 유체의 물리 특성에 대한 실험 연구)

  • Lee, Seok-Hyun;Son, June;Baek, Dae-Sung;Kwon, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1247-1252
    • /
    • 2014
  • In the present study, sedimentation and shear stress of MR fluid are investigated to physical characteristics of MR fluid along temperature conditions. MR fluid is a suspension of micrometer-sized magnetic particles in a base liquid. Therefore, dispersion of MR fluid is important in the case of the design and optimization of the system using MR fluid. Due to sedimentation characteristics of MR fluid by magnetic particles, the sedimentation and shear stress of commercial MR fluid are investigated at $25^{\circ}C$ and $80^{\circ}C$ temperatures by using a forced convection oven and a viscometer. From experimental results, the sedimentation and shear stress are more affected by the temperatures of $80^{\circ}C$ than $25^{\circ}C$ and the mixing time of 5min than 10min. Shear stress by the applied current increases the shape of a quadratic equation and are lower 6-18% at $80^{\circ}C$ than $25^{\circ}C$.

A Study on the Advection in a Micro Channel with Multi blocks (블록이 주기적으로 배열된 마이크로 채널에서의 교반해석)

  • Heo Hyeung Suk;Suh Yong Kweon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.415-418
    • /
    • 2002
  • Numerical study on the advection in a microchannel with multi blocks has been performed. the microchannel is simulated three-dimensionally using a commercial fluid analysis code, FLUENT 6.0. Geometric factors of blocks are used in analysing the mixing effect. the numerical results show that the height of blocks in the channel is a key factor. Further study is required to investigate mixing effect of the microchamel with various shapes.

  • PDF

Evaluation of Pressurized Water Diffusion in Water Treatment Process Using CFD (전산유체역학(CFD)를 활용한 정수공정에서 압력수 확산공정 진단)

  • Cho, Young-Man;Yoo, Soo-Jeon;Roh, Jae-Soon;Bin, Jae-Hoon;Choe, Kwang-Ju;Lee, Kwang-Ug;Lee, Gi-Bong;Lee, Jeong-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.359-367
    • /
    • 2011
  • The Process of Pressurized water diffusion is mixing process by pressurized water injection with coagulate and chlorine water in the water treatment system. The objectives of this research were to evaluate the mixing length and diameter of diffusion plate and distance from injection pipe for complete mixing by using computational fluid dynamics. From the results of CFD simulation, when diameter of injection pipe is 50 mm, 100 mm and injection pressure is $5kg/cm^2$ and the diameter of inlet pipe is 2,200 mm, the complete mixing length is 4D (D: Length as diameter of inlet pipe). When diameter of injection pipe is 50 mm, the diameter of the diffusion plate in o.1D and distance from injection pipe is 0.2D, the complete mixing length is 3D that is the most short mixing length. But when diameter of injection pipe is 100 mm and mutually related the diameter, distance of diffusion plate, the complete mixing length is 4D over. Therefore, as the diameter of inlet pipe is 2,200 mm, the injection pipe 50 mm is more efficient than 100 mm.

ANALYSIS OF MIXING EFFICIENCY OF A TUBULAR HEAT-EXCHANGER REACTOR USING CFD (CFD를 이용한 관상 열교환기형 반응기의 mixing 효율 분석)

  • Lee Ji Hyun;Song Hyun-Seob;Han Sang Phil
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.45-47
    • /
    • 2005
  • We have investigated the mixing behavior of a tubular heat exchanger reactor using CFD and compared its mixing performance with different type of reactors such as jet mixer and continuous stirred tank reactor (CSTR). The mixedness in each reactor was quantified introducing a statistical average value, the coefficient of variation (CoV), which is a normalized standard deviation of concentration of a component over the whole fluid domain. Through the analysis of the flow pattern and turbulent energy distribution, we suggested a simple but effective way to improve the mixing performance of the tubular heat-exchanger reactor, which include the addition of the internals and/or the increase of the recycle flow rate. It was found that the CoV value of the tubular reactor could be nearly equivalent to that of CSTR by applying those two alternatives suggested here.

  • PDF

Study on Flow Mixing Effects in a High-Speed Journal Bearing

  • Chun, Sang-Myung
    • KSTLE International Journal
    • /
    • v.1 no.2
    • /
    • pp.76-82
    • /
    • 2000
  • Turbulence in journal bearing operation is examined and the thermal variability is studied for isothermal, convective and adiabatic conditions on the walls under aligned and misaligned conditions. Also, the effects of a contraction ratio at the cavitation region and the mixing between re-circulating oil and inlet oil on the fluid field of oil film are included. An algorithm for the solution of the coupled turbulent Reynolds and energy equations is used to examine the effects of the various factors. Heat convection is found to play only a small role in determining friction and load under no mixing condition. However, under realistic mixing condition, the heat convection cannot be ignored. The wall temperature and heat transfer have been found to be of secondary important factors to the mixing effectiveness at the groove and the final mixture temperature.

  • PDF

Numerical Analyses of Three-Dimensional Thermo-fluid flow through Mixing Vane in A Subchannel of Nuclear Reactor (원자로 부수로내 혼합날개를 지나는 삼차원 열유동 해석)

  • Choi, Sang-Chul;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.311-318
    • /
    • 2003
  • The present work evaluates the effects of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly. by obtaining velocity and pressure fields. turbulent intensity. flow-mixing factors. heat transfer coefficient and friction factor using three-dimensional RANS analysis. Four different shapes of mixing vane. which were designed by the authors were tested to evaluate the performances in enhancing the heat transfer. Standard k-$\varepsilon$ model is used as a turbulence closure model. and. periodic and symmetry conditions are set as boundary conditions. The flow blockage ratio is kept constant. but the twist angle of mixing vane is changed. The results with three turbulence models were compared with experimental data.

The Proposal of a Quantitative Evaluation Method on Mixing Loss in the HVAC System Design (공기조화설비(HVAC) 설계시 혼합손실의 정량적 평가방안의 제안)

  • 이정재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.879-885
    • /
    • 2000
  • It is a serious subject for energy conservation to prevent the energy loss caused by mixing of heated and cooled air jets in a building which two types of air-conditioning systems are adopted in perimeter and interior zone. The purpose of this paper is to clarify the quantitative and qualitative mechanisms of the mixing loss and to propose preventive methods for it. In this paper, by using the dynamic heat load calculation method, heat extraction loads of a typical office building in Pusan are calculated. According to the results, numerical simulation based on the computational fluid dynamics were peformed in order to measure the mixing loss in physical size HVAC system. Then, the distributions of air temperature and velocity are analyzed in order to grasp the relations by setting temperature differences influence on the mixing loss.

  • PDF

Numerical Analyses of Three-Dimensinal Thermo-Fluid Flow through Mixing Vane in A Subchannel of Nuclear Reactor (원자로 부수로내 혼합날개를 지나는 삼차원 열유동 해석)

  • Choi S.C.;Kim K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.79-87
    • /
    • 2002
  • The present work analyzed the effect of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly, by obtaining velocity and pressure fields, turbulent intensity, flow-mixing factors, heat transfer coefficient and friction factor using three-dimensional RANS analysis. NJl5, NJ25, NJ35, NJ45, which were designed by the authors, were tested to evaluate the performances in enhancing the heat transfer. Standard $\kappa-\epsilon$ model is used as a turbulence closure model, and, periodic and symmetry conditions are set as boundary conditions. The flow blockage ratio is kept constant, but the twist angle of mixing vane is changed. The results with three turbulence models( $\kappa-\epsilon$, $\kappa-\omega$, RSM) were compared with experimental data.

  • PDF