DOI QR코드

DOI QR Code

Evaluation of Pressurized Water Diffusion in Water Treatment Process Using CFD

전산유체역학(CFD)를 활용한 정수공정에서 압력수 확산공정 진단

  • Cho, Young-Man (Water Quality Research of Busan Water Authority) ;
  • Yoo, Soo-Jeon (Water Quality Research of Busan Water Authority) ;
  • Roh, Jae-Soon (Water Quality Research of Busan Water Authority) ;
  • Bin, Jae-Hoon (Water Quality Research of Busan Water Authority) ;
  • Choe, Kwang-Ju (Environment and Green Zone Bureau of Busan City) ;
  • Lee, Kwang-Ug (Facility Construction Department of Busan Water Authority) ;
  • Lee, Gi-Bong (Myungjang Treatment Center of Busan Water Authority) ;
  • Lee, Jeong-Gyu (Myungjang Treatment Center of Busan Water Authority)
  • 조영만 (부산광역시상수도사업본부 수질연구소) ;
  • 유수전 (부산광역시상수도사업본부 수질연구소) ;
  • 노재순 (부산광역시상수도사업본부 수질연구소) ;
  • 빈재훈 (부산광역시상수도사업본부 수질연구소) ;
  • 최광주 (부산광역시 환경녹지국) ;
  • 이광욱 (부산광역시상수도사업본부 시설부) ;
  • 이기봉 (부산광역시상수도사업본부 명장정수사업소) ;
  • 이정규 (부산광역시상수도사업본부 명장정수사업소)
  • Received : 2011.04.26
  • Accepted : 2011.05.27
  • Published : 2011.05.31

Abstract

The Process of Pressurized water diffusion is mixing process by pressurized water injection with coagulate and chlorine water in the water treatment system. The objectives of this research were to evaluate the mixing length and diameter of diffusion plate and distance from injection pipe for complete mixing by using computational fluid dynamics. From the results of CFD simulation, when diameter of injection pipe is 50 mm, 100 mm and injection pressure is $5kg/cm^2$ and the diameter of inlet pipe is 2,200 mm, the complete mixing length is 4D (D: Length as diameter of inlet pipe). When diameter of injection pipe is 50 mm, the diameter of the diffusion plate in o.1D and distance from injection pipe is 0.2D, the complete mixing length is 3D that is the most short mixing length. But when diameter of injection pipe is 100 mm and mutually related the diameter, distance of diffusion plate, the complete mixing length is 4D over. Therefore, as the diameter of inlet pipe is 2,200 mm, the injection pipe 50 mm is more efficient than 100 mm.

압력수 확산공정은 정수공정에서 응집제나 염소용해수를 고압의 압력수로 분사하여 혼합하는 공정이다. 본 연구의 목적은 압력수 확산공정에 대한 전산유체역학적(Computational Fluid Dynamics) 진단을 통해 투입한 약품의 완전 혼합거리 및 혼합 거리를 줄이기 위한 확산판의 크기와 설치거리를 도출하는 것이다. 진단결과 2,200 mm 대형관에 $5kg/cm^2$ 압력수를 50mm, 100 mm 분사관으로 분사할 경우 혼합이 완료되는 혼합거리는 4D였다. 혼합거리를 줄이기 위해 분사관 전방에 확산판을 설치할 경우 분사관이 50 mm일 때 0.1D 직경의 확산판을 분사관 전방 0.2D 거리에 설치하면 혼합거리를 3D로 줄일 수있다. 그러나 분사관이 100 mm인 경우는 확산판의 크기와 설치 거리와는 상관없이 확산판이 없는 4D보다 확산거리를 줄일 수 없는 것으로 진단되었다. 따라서 2,200 mm 관에 압력수를 분사하는 경우는 50 mm 분사관을 설치하는 것이 100 mm보다 훨씬 효율적인 것으로 나타났다.

Keywords

References

  1. 김은주, 정철우, 최시환, 강임석, "정수공정시 급속혼화조건이 응집효율에 미치는 영향," 대한환경공학회지, 12(4), 631-640(2001).
  2. 정철우, 강민수, 최시환, 정수일, 손인식, 강임석, "응집공정에 적합한 In-Line 정적혼화기를 이용한 혼화공정의 개선," 상하수도학회지, 17(3), 451-459(2003).
  3. Kim, H. C. and Lee, S.,H., "Pump diffusion flash mixing for improving coagulation process in drinking water treatment," Separation & Purification Technology, 52, 117-125 (2006). https://doi.org/10.1016/j.seppur.2006.03.022
  4. Clark, M. M., Srivastava, J. S., Lang, R. R., Trussell, L. J., McCollum, D., Bailey, J. D. Christie, G. Stolarik, "Selection and Design of Mixing Processes for Coagulation," AWWA Research Foundation, Denver, USA(1994).
  5. 박영오, 박노석, 김성수, 김기돈, 임경호, "CFD모사 기법을 이용한 Pump Diffusion Mixer 내의 응집제 확산분포에 대한 평가," 상하수도학회지, 22(1), 49-63(2008).
  6. 박영오, 김기돈, 박노석, 임재림, 임경호, "Pump Diffusion Mixer에서 압력수량에 따른 응집제 확산분포 특성," 상하수도학회지, 22(1), 65-71(2008).
  7. Park, N. S. and Park, H. K., "Analysis of local velocity gradients in rapid mixer using particle image velocimetry technique," Water Sci. Technol., Water Supply, 2(5,6), 47-55(2002).
  8. Clark, M. M., Srivastava, J. S., Lang, R. R., Trussell, L. J., McCollum, D., Bailey, J. D. Christie, G. Stolarik, "Selection and Design of Mixing Processes for Coagulation," AWWA Research Foundation, Denver, USA(1994).
  9. Hudson, H. E. and Wolfner, J. P., "Design of Mixing and Sedimentation Basins," J. AWWA, 59(10), 1257-1268(1967).
  10. Kim, H. C. and Lee, S. H., "Pump diffusion flash mixing for improving coagulation process in drinking water treatment," Separation & Purification Technology, 52, 117-125 (2006). https://doi.org/10.1016/j.seppur.2006.03.022
  11. Susumu Kawamura, "Integrated design and operation of water treatment facilities," Second Edition, John Wiley & Sons, Inc., New York, 160-175(2000).
  12. Mazzolani, G., Pirozzi, F., d'Antonoi, G., "A generalized settling approach in the mumerical modeling of sedimentation tanks," Water Sci. Technol., 38(3), 95-102(1998). https://doi.org/10.1016/S0273-1223(98)00453-3
  13. Cao, Z., Wiley, D. E. and Fane, A. G., "CFD simulations of net-type turbulence promoters in a narrow channel," J. Membr. Sci., 185, 157-76(2001). https://doi.org/10.1016/S0376-7388(00)00643-8
  14. Cockx, A., Do-quang, Z., Line, A. and Roustan, M., "Use of computational fluid dynamics for simulating hydrodynamics and mass transfer in industrial ozonation towers," Chem. Eng. Sci., 54(21), 5085-5090(1999). https://doi.org/10.1016/S0009-2509(99)00239-0
  15. Panneerselvam, R., Savithri, S. and Surender, G. D., "CFD simulation of hydrodynamics of gas-liquid-solid fluidised bed reactor," Chem. Eng. Sci., 64(6), 1119-1135(2009). https://doi.org/10.1016/j.ces.2008.10.052

Cited by

  1. Analysis of Seawater Intake System using the RNG k-𝜖 Algorithm vol.14, pp.12, 2013, https://doi.org/10.5762/KAIS.2013.14.12.6447
  2. Most suitable design method of post-chlorination process in portable water process by using CFD vol.27, pp.3, 2013, https://doi.org/10.11001/jksww.2013.27.3.331
  3. THREE-DIMENSIONAL FLOW COMPUTATION AND PERFORMANCE CHARACTERISTICS ANALYSIS OF PROPELLERS FOR WATER TREATMENT MIXER vol.20, pp.1, 2015, https://doi.org/10.6112/kscfe.2015.20.1.010