• 제목/요약/키워드: Fluid Mixing

검색결과 556건 처리시간 0.024초

미소블록에 의한 교차 회전유동과 미소유로에 의한 박층유동을 이용한 정적 혼돈 미소유체 혼합기에 관한 연구 (Static Chaos Microfluid Mixers Using Alternating Whirls and Laminations)

  • 장성환;조영호
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1549-1556
    • /
    • 2004
  • We have deigned, fabricated and compared four different types of static chaos microfluid mixers, including the mixers using straight channel flow, microblock-induced alternating whirl flow, microchannel-induced lamination flow, and combined alternating whirl-lamination flow. Among them, the alternating whirl-lamination (AWL-type) mixer, composed of 3-D rotationally arranged microblocks and dividing microchannels fabricated by conventional planar lithography process, is effective to reduce the mixing length over wide flow rate ranges. We characterize the performance of the fabricated mixers, through the flow visualization technique using phenolphthalein solution. We verify that the AWL-type microfluid mixer shows the shortest fluid mixing length of 2.8mm∼5.8mm for the flow rate range of Re=0.26∼26 with the pressure drop lower than 5kPa. Compared to the previous mixers, requiring the mixing lengths of 7∼17mm, the AWL-type microfluid mixer results in the 60% reduction of the mixing lengths. Due to the reduced mixing lengths within reasonable pressure drop ranges, the present micromixers have potentials for use in the miniaturized Micro-Total-Analysis-Systems($\mu$TAS).

엔진베이 환기용 이젝터시스템 개발 (Development of an Ejector System for the Engine-Bay Ventilation)

  • 임주현;김용련;전상인;장성호;이상효
    • 항공우주시스템공학회지
    • /
    • 제8권1호
    • /
    • pp.30-35
    • /
    • 2014
  • This study has been conducted to develop an ejector system applied in the aircraft engine-bay ventilation system. Tandem-Ejector was selected as a component of ventilation system because it could achieve high ventilation performance in spite of motive flow with small flow rate. Tandem-Ejector is composed of a primary nozzle and two mixing ducts ($1^{st}$ mixing duct and $2^{nd}$ mixing duct). In this study, 1-D Tandem-Ejector model has been built with conservation laws and isentropic relation for 1-D ejector sizing and performance prediction. Computational Fluid Dynamics(CFD) has been conducted to investigate ejector performance and flow characteristics in the ejector. Also, Tandem-Ejector performance tests have been conducted to obtain ejector pumping performance and to investigate stand-off (gap between primary nozzle and $1^{st}$ mixing duct inlet) effect on ejector pumping performance.

혼합효율 개선을 위한 Shear Mixer의 시뮬레이션 기반 형상 설계 (Simulation-Based Design of Shear Mixer for Improving Mixing Performance)

  • 김태영;전규목;옥대경;박종천
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제20권2호
    • /
    • pp.107-116
    • /
    • 2017
  • 해양 유정의 시추를 위한 드릴링이 진행되는 동안 원활한 드릴링 작업을 진행하기 위하여 드릴링 시스템을 순환하는 머드에 벌크가 Shear mixer을 통하여 첨가된다. 이러한 벌크 투입으로 조절된 머드의 물성치는 드릴링시스템 전반의 안정성에 영향을 주며, 머드와의 혼합이 이루어지는 Shear mixer의 성능개선은 전체 드릴링 시스템의 성능향상과 관계된다고 할 수 있다. 이에 본 연구에서는 Shear mixer내 혼상유동의 특징을 알아보기 위해 파이프형상의 관내 고체-액체 혼상유동 실험에서 측정된 고체 침전도결과(Gilles et al., 2004)를 시뮬레이션 결과와 비교검증을 수행한 후, 이를 통해 얻어진 관내 액체-고체 혼상유동 시뮬레이션 조건을 바탕으로 Shear mixer의 혼합효율을 개선시킬 수 있는 최적형상에 관한 시뮬레이션 기반 설계를 수행하였다.

기포 유동층 반응기내 목질계 바이오매스의 급속열분해 특성 (THE FAST PYROLYSIS CHARACTERISTICS OF LIGNOCELLULOSIC BIOMASS IN A BUBBLING FLUIDIZED BED REACTOR)

  • 최항석
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.94-101
    • /
    • 2011
  • The fast pyrolysis characteristics of lignocellulosic biomass are investigated for a bubbling fluidized bed reactor by means of computational fluid dynamics (CFD). To simulate multiphase reacting flows for gases and solids, an Eulerian-Eulerian approach is applied. Attention is paid for the primary and secondary reactions affected by gas-solid flow field. From the result, it is scrutinized that fast pyrolysis reaction is promoted by chaotic bubbling motion of the multiphase flow enhancing the mixing of solid particles. In particular, vortical flow motions around gas bubbles play an important role for solid mixing and consequent fast pyrolysis reaction. Discussion is made for the time-averaged pyrolysis reaction rates together with time-averaged flow quantities which show peculiar characteristics according to local transverse location in a bubbling fluidized bed reactor.

바이오매스 급속열분해 반응기내 열전달 특성 (HEAT TRANSFER CHARACTERISTICS IN A FAST PYROLYSIS REACTOR FOR BIOMASS)

  • 최항석
    • 한국전산유체공학회지
    • /
    • 제15권1호
    • /
    • pp.9-16
    • /
    • 2010
  • The characteristics of flow and heat transfer in a bubbling fluidized bed are investigated by means of computational fluid dynamics (CFD). To simulate two-phase flow for the gas and solid flows, Eulerian-Eulerian approach is applied. Attention is paid for a heat transfer from the wall to fluidized bed by bubbling motion of the flow. From the result, it is confirmed that heat transfer is promoted by chaotic bubbling motion of the flow by enhancement of mixing among solid particles. In particular, the vortical flow motion around gas bubble plays an important role for the mixing and consequent heat transfer. Discussion is made for the time and space averaged Nusselt number which shows peculiar characteristics corresponding to different flow regimes.

정수장내 수류에너지를 이용한 액체약품의 효율적인 혼화를 위한 수리해석 (Numerical Study on effective Mixing Chemical Liquid using Hydraulic Energy in a Water Treatment Plant)

  • 송길섭;오석영;박영빈
    • 한국전산유체공학회지
    • /
    • 제7권2호
    • /
    • pp.1-7
    • /
    • 2002
  • The present study is developed device that effectively mixes raw water and chemicals by using the residual head of fluid in the front pipe of flocculation basin, and performed non-dimensional analysis and presented design standard to apply to water plants that have different equipment capacity. The variables for design are a proper ratio between an outer diameter of deflector and a diameter of pipe, a distance between deflector and orifice and a determination of orifice diameter for an optimal mixing. Numerical study has analyzed flow field on a basis of turbulent intensity in an orifice downstream. As Reynolds number of In-Line Orifice was increased from identical design variable, the turbulent intensity of pipe center was no changed almost.

초음파 조사를 이용한 압축성 평행 제트의 활성화 (Mixing Augmentation of the Compressible Parallel Jets Using the Irradiation of Ultrasonic Waves)

  • 장세명;신성룡;이수갑
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.138-143
    • /
    • 2001
  • An experimental model to enhance the mixing of parallel supersonic-subsonic jet ($M_1$=1.78 and $M_2$=0.30) is simulated with a numerical technique by modeling the wall-mounted cavity to a boundary condition of oscillating pressure. The computed pilot pressure distributions along three representative cross sections show a good agreement with the equivalent experimental data. The irradiation of acoustic wave in the ultrasonic range causes the mixing augmentation of jet and wake due to the transfer of vibration energy between fluid particles.

  • PDF

교반 탱크 내 회전 유동의 CFD 해석 연구 (A Study on CFD Simulation of Rotational Flow in Stirred Tanks)

  • 조찬영;남진현;신동훈;정태용
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1406-1411
    • /
    • 2009
  • Stirred tanks are widely used in various industries for mixing operations and chemical reactions for single- or multi-phase fluid systems. In this study, a numerical study was conducted to predict the mixing characteristics in a simple stirred tank. The flow in the model stirred tank was calculated utilizing the multiple reference frame (MRF) and the sliding mesh (SM) capabilities of a commercial CFD code (Fluent 6.2). The results of the flow simulation were analyzed in terms of the mixing efficiency, and the applicability of MRF and SM methods was also discussed.

  • PDF

두 원형분류에 의한 $45^{\circ}$ 충돌분류의 흔합유동구조에 대한 난류모델 평가 (Evaluation of Turbulent Models on the Mixing Flow Structure of $45^{\circ}$ Impinging Jet by Two Round Jets)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제13권5호
    • /
    • pp.34-39
    • /
    • 2009
  • In this paper, the CFD analysis using various turbulent models has been performed to evaluate which type of turbulent models can predict well the mixing flow structure of $45^{\circ}$ impinging round jet. This CFD analysis has been carried out through the commercial Fluent software. As a result, any of turbulent models cannot predict the experimental results definitely all over the flow range. However, as compared with the experimental results, the turbulent model of realizable(RLZ) k-$\varepsilon$ only predicts well in the limited range between X/$X_0=1.1$ and X/$X_0=2.0$.

  • PDF

A PRESSURE DROP MODEL FOR PWR GRIDS

  • Oh, Dong-Seok;In, Wang-Ki;Bang, Je-Geon;Jung, Youn-Ho;Chun, Tae-Hyun
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.483-488
    • /
    • 1998
  • A pressure drop model for the PWR grids with and without mixing device is proposed at single phase based on the fluid mechanistic approach. Total pressure loss is expressed in additive way for form and frictional losses. The general friction factor correlations and form drag coefficients available in the open literatures are used to the model. As the results, the model shows better predictions than the existing ones for the non-mixing grids, and reasonable agreements with the available experimental data for mixing grids. Therefore it is concluded that the proposed model for pressure drop can provide sufficiently good approximation for grid optimization and design calculation in advanced grid development.

  • PDF