• Title/Summary/Keyword: Fluid Grid

Search Result 511, Processing Time 0.022 seconds

Numerical simulation of wave slamming on 3D offshore platform deck using a coupled Level-Set and Volume-of-Fluid method for overset grid system

  • Zhao, Yucheng;Chen, Hamn-Ching;Yu, Xiaochuan
    • Ocean Systems Engineering
    • /
    • v.5 no.4
    • /
    • pp.245-259
    • /
    • 2015
  • The numerical simulation of wave slamming on a 3D platform deck was investigated using a coupled Level-Set and Volume-of-Fluid (CLSVOF) method for overset grid system incorporated into the Finite-Analytic Navier-Stokes (FANS) method. The predicted slamming impact forces were compared with the corresponding experimental data. The comparisons showed that the CLSVOF method is capable of accurately predicting the slamming impact and capturing the violent free surface flow including wave slamming, wave inundation and wave recession. Moreover, the capability of the present CLSVOF method for overset grid system is a prominent feature to handle the prediction of wave slamming on offshore structure.

Computational Fluid Dynamics on The Grid Computing Environment (그리드 컴퓨팅 환경을 이용할 전산 유체 해석)

  • Sung Chun-ho;Cho Kum Won;Park Hyungwoo;Lee Sangsan;Kim Dae-Hee;Kwon Jang Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.71-77
    • /
    • 2002
  • The grid technology is believed to be the next generation research tool for both computational and experimental scientists. With advanced network technologies and middleware, geographically distributed facilities can be tightly connected to provided a huge amount of resources or remote accessibility, In this paper, an overview of grid technology will be introduced with an emphasis in application to computational fluid dynamics. The computational fluid dynamics, which involves solution of partial differential equations, is basically limited by the computing power, With the grid technology, virtually unlimited resources are provided. The schematic structure of middleware and grid environment, as well as some preliminary results are presented.

  • PDF

A Numerical Analysis of Internal Nozzle Flows Through the Multi-Fluid Model (다유체 모델을 이용한 노즐 내부 유동에 대한 수치적 연구)

  • Ryu, Bong-Woo;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.16 no.4
    • /
    • pp.186-194
    • /
    • 2011
  • This study performed the numerical analysis of the internal nozzle flows including cavitation phenomena by using the automated body-fitted grid generator and the multi-fluid model. The effect of grid refinement and the validation of multifluid model were investigated using four computational meshes under two test conditions. The mesh #3 was chosen as the optimum which can reduce the computational time and have good prediction ability to identify the cavitation region simultaneously. In addition, the computed results using multi-fluid model were compared with the reference experimental observations and numerical simulation results using homogeneous equilibrium model. From the distribution of volume fraction and velocity field, the multi-fluid model predicted the internal nozzle flows well when the liquid quality parameters were selected as $1.0{\times}10^{12}$ for initial number density and 25 ${\mu}m$ for bubble diameter.

CFD simulation of vortex-induced vibration of free-standing hybrid riser

  • Cao, Yi;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.7 no.3
    • /
    • pp.195-223
    • /
    • 2017
  • This paper presents 3D numerical simulations of a Free Standing Hybrid Riser under Vortex Induced Vibration, with prescribed motion on the top to replace the motion of the buoyancy can. The model is calculated using a fully implicit discretization scheme. The flow field around the riser is computed by solving the Navier-Stokes equations numerically. The fluid domain is discretized using the overset grid approach. Grid points in near-wall regions of riser are of high resolution, while far field flow is in relatively coarse grid. Fluid-structure interaction is accomplished by communication between fluid solver and riser motion solver. Simulation is based on previous experimental data. Two cases are studied with different current speeds, where the motion of the buoyancy can is approximated to a 'banana' shape. A fully three-dimensional CFD approach for VIV simulation for a top side moving Riser has been presented. This paper also presents a simulation of a riser connected to a platform under harmonic regular waves.

HYDRODYNAMIC SOLVER FOR A TRANSIENT, TWO-FLUID, THREE-FIELD MODEL ON UNSTRUCTURED GRIDS (비정렬격자계에서 과도 이상유동해석을 위한 수치해법)

  • Jeong, J.J.;Yoon, H.Y.;Kim, J.;Park, I.K.;Cho, H.K.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.44-53
    • /
    • 2007
  • A three-dimensional (3D) unstructured hydrodynamic solver for transient two-phase flows has been developed for a 3D component of a nuclear system code and a component-scale analysis tool. A two-fluid three-field model is used for the two-phase flows. The three fields represent a continuous liquid, an entrained liquid, and a vapour field. An unstructured grid is adopted for realistic simulations of the flows in a complicated geometry. The semi-implicit ICE (Implicit Continuous-fluid Eulerian) numerical scheme has been applied to the unstructured non-staggered grid. This paper presents the numerical method and the preliminary results of the calculations. The results show that the modified numerical scheme is robust and predicts the phase change and the flow transitions due to boiling and flashing very well.

Computing Fluid Flow without Grid Generation

  • Hui W.H.;Wu Z.N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.29-32
    • /
    • 2003
  • It is shown that using the unified coordiantes of Hui et al.[1 - 4], one can now compute fluid flow without prior grid generation. This represents a great saving of computing time.

  • PDF

Effect of Double Grid Cathode in IEC Device (IEC 장치에서 이중 그리드 음극의 영향)

  • Ju, Heung-Jin;Kim, Bong-Seok;Hwang, Hwui-Dong;Park, Jeong-Ho;Ko, Kwang-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.51-51
    • /
    • 2010
  • We have proposed a new configuration for the improvement of neutron yield without the application of external ion sources in an inertial electrostatic confinement (IEC) device. The application of a double grid cathode to the IEC device is expected to generate a higher ion current than a single grid cathode. This paper verifies the effect of the double grid cathode by both fluid and particle simulation. Through the fluid simulation the optimal shape and applied voltage of the double grid cathode is determined, and through the particle simulation the usefulness of that is confirmed.

  • PDF

3D SIMULATION OF FLAPPING FLAGS IN A UNIFORM FLOW BY THE IMMERSED BOUNDARY METHOD

  • Huang, Wei-Xi;Sung, Hyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.141-148
    • /
    • 2007
  • We present an immersed boundary (IB) method for 3D simulation of flappingflags in a uniform flow. The proposed formulation is manipulated on the basis of an efficient Navier-Stokes solver adopting the fractional step method and a staggered Cartesian grid system. A direct numerical method is developed to calculate the flag motion, with the elastic force treated implicitly. The fluid motion defined on an Eulerian grid and the flag motion defined on a Lagrangian grid are independently solved and the mass of flag is handled in a natural way. An additional momentum forcing is formulated from the flag motion equation in a way similar with the direct-forcing IB formulation and acts as the interaction force between the flag and ambient fluid. A series of numerical tests are performed and the present results are compared qualitatively and quantitatively with previous studies. The instantaneous flag motion is analyzed under different conditions and surrounding vortical structures are identified. The effects of physical parameters on the flapping frequency are studied.

  • PDF