• Title/Summary/Keyword: Fluid Force Moment

Search Result 84, Processing Time 0.022 seconds

A Fluid Analysis to develop the Damper for Tsunami Prevention in Nuclear Power Plant (원자력 발전소에서 쓰나미 방지용 댐퍼 개발을 위한 유동해석)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.1
    • /
    • pp.53-59
    • /
    • 2021
  • The purpose of this study is to develop a damper that protects against the dangers of tidal waves since there's no function to block the inflow of large amounts of water into the inside When natural disasters such as tidal waves occur. Therefore, it intended to derive the design data by simulating through flow analysis in order to predict the pressure that a damper configured to open and close manually or automatically receives. It examined the preceding researches first and conducted the flow analysis, to predict the force of the damper installed on the bottom of the building's outside to prevent the inflow of seawater into the inside when natural disaster occurring. As a result, it showed that, in the event of a tsunami, it moved about 170m and the time impacting the damper occurred within about eight seconds, and, at the moment, the damper door was pressured about 17bar. Also, it could identify that the load was approximately 900kN and the force by the fluid was applied to the damper door.

An study on the ramp tabs for thurst vector control symmetrically installed at the supersonic nozzle exit (초음속 노즐 출구에 대칭적으로 설치한 추력방향제어장치인 램프 탭의 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.32-37
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and schlieren system. This paper provides the thrust spoilage, three directional forces and moments and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

A Finite Element Formulation for Vibration Analysis of Rotor Bearing System

  • Park, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4E
    • /
    • pp.37-44
    • /
    • 1996
  • To get accurate vibration analysis of rotor-bearing systems, finite element models of high speed rotating shaft, unbalance disk, and fluid film journal bearing are developed. The study includes the effects of rotary inertia, gyroscopic moment, damping, shear deformation, and axial torque in the same model. It does not include the axial force effect, but the extension is straighforward. The finite elements developed can be used in the analysis design of any type of multiple rotor bearing system. To show the accuracy of the models, numerical examples are demonstrated.

  • PDF

Wind tunnel test study on verifying the characteristics of torsional fluctuating wind force of rectangular tall buildings (고층건축물의 비틀림방향 변동풍력의 특성에 관한 실험적 연구)

  • Ha, Young-Cheol;Kim, Dong-Woo;Kil, Yong-Sik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.101-104
    • /
    • 2006
  • This study aims at verifying characteristics of torsional fluctuating moment coefficient and power spectral density, which is needed to estimate torsional response of tall buildings. In order to estimate characteristics, the wind tunnel tests have been conducted on 52 types aero-elastic model of the rectangular prisms with various aspects ratios, side ratios and surface roughness in turbulent boundary layer flows. In this paper, characteristics of torsional fluctuating wind force are briefly discussed and then these results were mainly analyzed as a function of the aspects ratios and side ratios of buildings.

  • PDF

A Study on the Dynamic Characteristics of the Gas Spring on the Automotive Application (차량 장착상태에서의 가스 스프링 동적 특성 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.15-20
    • /
    • 2015
  • Unlike a typical metal spring, a gas spring uses compressed gas contained in a cylinder and compressed by a piston to exert a force. A common application includes automobiles where gas spring are incorporated into the design of open struts that support the weight of tail gate. They are also used in furniture such as office chairs, and in medical and aerospace applications. The gas spring works by the application of pressurized gas (nitrogen) contained in a cylinder. The internal pressure of the gas spring greatly exceeds atmospheric pressure. This differential in pressure exists at any rod position and generates an outward force on the rod, making the gas spring extend. In this paper, we investigated the dynamic characteristics of a gas spring on an automotive tail gate system.

Estimation of Hydrodynamic Derivatives of Full-Scale Submarine using RANS Solver

  • Nguyen, Tien Thua;Yoon, Hyeon Kyu;Park, Youngbum;Park, Chanju
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.386-392
    • /
    • 2018
  • It is necessary to predict hydrodynamic derivatives when assessing the maneuverability of a submarine. The force and moment acting on the vehicle may affect its motion in various modes. Conventionally, the derivatives are determined by performing captive model tests in a towing tank or applying a system identification method to the free running model test. However, a computational fluid dynamics (CFD) method has also become a possible tool to predict the hydrodynamics. In this study, virtual captive model tests for a full-scale submarine were conducted by utilizing a Reynolds-averaged Navier-Stokes solver in ANSYS FLUENT version 18.2. The simulations were carried out at design speed for various modes of motion such as straight forward, drift, angle of attack, deflection of the rudder, circular, and combined motion. The hydrodynamic force and moment acting on the submarine appended rudders and stern stabilizers were then obtained. Finally, hydrodynamic derivatives were determined, and these could be used for evaluating the maneuvering characteristics of the submarine in a further study.

Aerodynamic performance of a novel wind barrier for train-bridge system

  • He, Xuhui;Shi, Kang;Wu, Teng;Zou, Yunfeng;Wang, Hanfeng;Qin, Hongxi
    • Wind and Structures
    • /
    • v.23 no.3
    • /
    • pp.171-189
    • /
    • 2016
  • An adjustable, louver-type wind barrier was introduced in this study for improving the running safety and ride comfort of train on the bridge under the undesirable wind environment. The aerodynamic characteristics of both train and bridge due to this novel wind barrier was systematically investigated based on the wind tunnel tests. It is suggested that rotation angles of the adjustable blade of the louver-type wind barrier should be controlled within $90^{\circ}$ to achieve an effective solution in terms of the overall aerodynamic performance of the train. Compared to the traditional grid-type wind barrier, the louver-type wind barrier generally presents better aerodynamic performance. Specifically, the larger decrease of the lift force and overturn moment of the train and the smaller increase of the drag force and torsional moment of the bridge resulting from the louver-type wind barrier were highlighted. Finally, the computational fluid dynamics (CFD) technique was applied to explore the underlying mechanism of aerodynamic control using the proposed wind barrier.

Prognosis of aerodynamic coefficients of butterfly plan shaped tall building by surrogate modelling

  • Sanyal, Prasenjit;Banerjee, Sayantan;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.34 no.4
    • /
    • pp.321-334
    • /
    • 2022
  • Irregularity in plan shape is very common for any type of building as it enhances better air ventilation for the inhabitants. Systematic opening at the middle of the facades makes the appearance of the building plan as a butterfly one. The primary focus of this study is to forecast the force, moment and torsional coefficient of a butterfly plan shaped tall building. Initially, Computational Fluid Dynamics (CFD) study is done on the building model based on Reynolds averaged Navier Stokes (RANS) k-epsilon turbulence model. Fifty random cases of irregularity and angle of attack (AOA) are selected, and the results from these cases are utilised for developing the surrogate models. Parametric equations are predicted for all these aerodynamic coefficients, and the training of these outcomes are also done for developing Artificial Neural Networks (ANN). After achieving the target acceptance criteria, the observed results are compared with the primary CFD data. Both parametric equations and ANN matched very well with the obtained data. The results are further utilised for discussing the effects of irregularity on the most critical wind condition.

Performance Analysis of High-Speed Ceramic Ball Bearings Under Thrust Loads in EHD Lubrication (축방향 하중을 받는 고속 세라믹 볼베어링에 대한 EHD 윤활영역에서의 성능 해석)

  • 반종억;김경웅
    • Tribology and Lubricants
    • /
    • v.14 no.2
    • /
    • pp.26-34
    • /
    • 1998
  • This paper presents a high-speed performance analysis of ball bearings with ceramic balls under thrust loads. The sliding velocity profiles between a ball and raceways were obtained by the 3-D quasi-dynamic equations of motion including both centrifugal force and gyroscopic moment derived by vector matrix algebra. The friction at the contact areas was obtained by the Bair-Winer's non-Newtonian rheological model and the Hamrock-Dowson's central film thickness in EHL analysis. The nonlinear equations were solved by the Newton-Raphson method and the underrelaxation iterative method. The friction torques and ball behaviors with various loads, ball materials, and contact angles were predicted by this model. It was shown that the friction torque was sensitive to thrust load and contact angle, and that the friction torque and the pitch angle of the bearing with ceramic balls are smaller than those of the bearing with steel balls.

2-dimensional Hydrodynamic Forces of Heaving, Swaying and Rolling Cylinders on a Free Surface of a Water of Finite Depth

  • Rhee, K.P.
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.14 no.3
    • /
    • pp.13-22
    • /
    • 1977
  • The hydrodynamic forces acting on a forced oscillating 2-dimensional cylinder on a free surface of a fluid of a finite depth are calculated by distributing singularities on the immersed body surface. And the Haskind-Newman relation in a fluid of a finite depth is derived. The wave exciting force of the cylinder to an oscillation is also calculated by using the above relation. The method is applied to a circular cylinder swaying in a water of finite depth, and then, to a rectangular cylinder heaving, swaying, and rolling. The results of above cases give a good agreement with those by earlier investigators such as Bai, Keil, and Yeung. Also, this method is applied to a Lewis form cylinder with a half beam-to-draft ratio of 1.0 and a sectional area coefficient of 0.941, and to a bulbous section cylinder which is hard to represent by a mapping function. The results reveal that the hydrodynamic forces in heave increase as the depth of a water decrease, but in sway or roll, the tendency of the hydrodynamic forces is difficult to say in a few words. The exciting force to heave for a bulbous section cylinder becomes zero at two frequencies. The added mass moment of inertia for roll is seemed to mainly depend on the sectional shape than the water depth.

  • PDF