• Title/Summary/Keyword: Fluid Flow Noise

Search Result 452, Processing Time 0.024 seconds

Analysis on Performance of Axial Flow Fan for Outdoor Unit of Air-conditioner: Noise Characteristics (에어컨 실외기용 축류홴의 성능에 관한 연구: 소음 특성)

  • Kim, Yong-Hwan;Lee, Jang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.29-34
    • /
    • 2010
  • In this paper, aerodynamic noise of axial flow fans for outdoor unit of air-conditioner was analyzed by both experiment and numerical simulation. The three-dimensional incompressible turbulent flow was predicted by the commercial computational fluid dynamics code SC/Tetra, while the aeroacoustic noise of an axial flow fan was predicted by FlowNoise. Computations and experiments were performed with two types of axial flow fans, in which very different noise source distributions were presented. The results obtained from this study are expected to show the way to reduce the noise of axial flow fans in industrial applications.

Experimental Study on the Design Parameter Effects on the Flow-rate and the Noise level in a Cross-flow Fan (실험에 의한 직교류홴의 유량 및 소음 분석)

  • Ahn, Cheol-O;Rew, Ho-Seon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.1 no.1 s.1
    • /
    • pp.41-48
    • /
    • 1998
  • This study was carried out to investigate the effect of design parameters on the volume flow-rate and the noise level and to finally find the optimal design variables. Eighteen cross-flow fans were designed by the method of orthogonal array, and the flow-rate and the noise level were measured. These data were analyzed by the neural network system. The effects of eight design variables(scroll exit angle, scroll arc length et al.) on the fan performance and the noise level were valuated and discussed. This experiment shows that the design solutions suggested by neural network system may increase its volume flow-rate and reduce noise simultaneously.

  • PDF

Nonlinear Characteristics of Low-speed Flow Induced Vibration for the Safety Design of Micro Air Vehicle

  • Chang, Tae-Jin;Kim, Dong-Hyun;Lee, In
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.873-881
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of an equivalent airfoil system of MAV have been investigated in low Reynolds number flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-Stokes equations. The present fluid/structure interaction analysis is based on one of the most accurate computational approach with computational fluid dynamics (CFD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed for the low Reynolds region that has a dominancy of flow viscosity. The effects of Reynolds number and initial angle of attack on the fluid/structure coupled vibration instability are shown and the qualitative trend of FIV phenomenon is investigated.

A Computerized Design System of the Axial Fan Considering Performance and Noise Characteristics (성능 및 소음특성을 고려한 축류 팬 설계의 전산 체계)

  • Lee, Chan;Kil, Hyun-Gwon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.48-53
    • /
    • 2010
  • A computerized design system of axial fan is developed for constructing 3-D blade geometry and predicting both aerodynamic performance and noise. The aerodynamic blading design of fan is conducted by blade angle distribution, camber line determination, airfoil thickness distribution and blade element stacking along spanwise distance. The internal flow and the aerodynamic performance of designed fan are predicted by the through-flow modeling technique with flow deviation and pressure loss correlations. Based on the predicted internal flow field and performance data, fan noise is predicted by two models for discrete frequency and broadband noise sources. The present predictions of the flow distribution, the performance and the noise level of actual fans are well agreed with measurement results.

Selection and Noise Evaluation Methods of the System Electronic Cooling Fan (시스템 전자 냉각 팬의 선정 및 소음 평가 기법)

  • Lee, Chan;Yun, Jae-Ho;Gwon, Oh-Kyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.3 s.42
    • /
    • pp.33-38
    • /
    • 2007
  • Fan selection procedure and fan noise evaluation method are presented for the system electronic cooling by combining FNM(Flow Network Model) and fan noise correlation model. Internal flow paths and distribution in electronic system we analyzed by using the FNM with the flow resistances for flow elements of the system. Based on the fan operation point predicted from the FNM analysis results, the present fan noise model predicts overall sound power, pressure levels and spectrum. The predictions of the flow distribution, the fan operation and the noise level in electronic system by the present method are well agreed with 3-D CFD and actual test results.

Vibration Analysis of A 3-Dimensional Pipe Conveying Pulsating Fluid Flow (맥동하는 유체를 포함하는 3차원 배관 계의 진동 해석)

  • Seo, Young-Soo;Jeong, Weui-Bong;Yoon, Sang-Don
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.933-938
    • /
    • 2002
  • A pulsation of fluid in a pipe sometimes causes severe vibration of pipe. The inertia, damping and stiffness characteristics of pipe will be changed by the effect of fluid-structure interaction. The velocity and pressure of fluid will impose the force to a bended shape pipe. In this paper, a pipe with fluid flow is modeled by finite element method and the fluid force from pulsation is also modeled by the fluid dynamics. The vibration of pipe conveying pulsating fluid flow can be estimated by taking into consideration of fluid-structure interaction.

  • PDF

Vibration Analysis of A 3-Dimensional Pipe Conveying Pulsating Fluid Flow (맥동하는 유체를 포함하는 3차원 배관계의 진동해석)

  • Seo, Young-Soo;Jeong, Weui-Bong;Yoon, Sang-Don
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.391.1-391
    • /
    • 2002
  • A pulsation of fluid in a pipe sometimes cause severe vibration of pipe. The inertia, damping and stiffness characteristics of pipe will be changed by the effect of fluid-structure interaction. The velocity and pressure of fluid will impose the force to a bended shape pipe. In this paper, a pipe with fluid flow is modeled by finite element method and the fluid force from pulsation is also modeled by the fluid dynamics. The vibration of pipe conveying pulsating fluid flow can be estimated by taking into considering of fluid-structure interaction.

  • PDF

Finite Element Vibration Analysis of Cylindrical Shells with Internal Fluid Flow (내부 유체 유동을 포함하는 원통 셸의 유한요소 진동해석)

  • 서영수;정의봉
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.911-916
    • /
    • 2003
  • A method for the dynamic analysis of thin-walled cylindrical shell conveying steady fluid flow presents. The dynamics of thin-walled shell is based on Sanders' theory and the fluid flow in cylindrical shell is treated inviscid, incompressible fluid. A dynamic coupling conditions at fluid-structure interface is used. The equations of motion are solved by a finite element method and validated by comparing the natural frequency with other published results and Nastran. The influence of fluid velocity on the frequency response function is illustrated and discussed.

  • PDF

Critical Fluid Velocity of Fluid-conveying Cantilevered Cylindrical Shells with Intermediate Support (중간 지지된 유체 유동 외팔형 원통셸의 임계유속)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.422-429
    • /
    • 2011
  • The critical fluid velocity of cantilevered cylindrical shells subjected to internal fluid flow is investigated in this study. The fluid-structure interaction is considered in the analysis. The cantilevered cylindrical shell is supported intermediately at an arbitrary axial position. The intermediate support is simulated by two types of artificial springs: translational and rotational spring. It is assumed that the artificial springs are placed continuously and uniformly on the middle surface of an intermediate support along the circumferential direction. The steady flow of fluid is described by the classical potential flow theory. The motion of shell is represented by the first order shear deformation theory (FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be considered by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with existing results.

A Study on the Radiated Noise the Prediction in the Pipe by Fluid Induced Vibration using the Radiation Efficiency and Pipe Surface Vibration (배관 표면진동과 방사효율을 이용한 배관 소음예측기법 연구)

  • Yi, Jongju;Park, Kyunghoon;Jung, Woojin;Seo, Youngsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.10
    • /
    • pp.763-769
    • /
    • 2014
  • This study is on the experiment and prediction of the pipe noise due to the internal fluid. The vibration of pipe external surface and noise in air were measured according to the internal fluid velocity and pipe type. In the experiment, the vibration and noise level of the straight pipe and rounded pipes show that the vibration and noise level are almost same. The 900 mitred pipe shows the high vibration and noise level. In the prediction of noise due to the internal flow, the method using the pipe surface vibration and radiation efficiency shows good agreement with experimental result.