• Title/Summary/Keyword: Fluid Distribution

Search Result 1,692, Processing Time 0.029 seconds

Fluid Flow and Heat Transfer in a Super high-Pressure Mercury Lamp using CFD

  • Jang, Dong Sig;Lee, Yeon Won;Li, Kui Ming;Parthasarathy, Nanjundan;Choi, Yoon Hwan
    • International Journal of Safety
    • /
    • v.11 no.2
    • /
    • pp.5-9
    • /
    • 2012
  • The discharge properties of super high-pressure mercury lamp are due to resistance heating for energy input, and results in temperature increase. The cooling equilibrium state is reached by the heat conduction, convection and radiation. In order to predict the fluid flow and heat transfer in and around the mercury lamp accurately, its visualization is of utmost importance. Such visualization is carried out by CFD program in this study. We focus on Anode shape to calculate four cases, namely AA, AB, AC and AD separately, and compare the temperature distribution and velocity vector in each case to predict cooling capacity and fluid flow properties. It can be concluded that the shape of anode plays an important role that affects the fluid flow and heat transfer in a mercury lamp.

Application simulations as numerical laboratory for large diameter rockfill materials (대입경 락필재료에 대한 수치시험실 활용해석)

  • Jeon, Je-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.852-855
    • /
    • 2010
  • Numerical simulations for large scale triaxial tests with large diameter rockfill materials are conducted using distinct element method. For generation of compacted assembly with specific grain size distribution and initial material porosity, the clump logic method and expansion of generated particles are adapted. With micro parameters which are chosen by calibration process, discrete particle modelling of triaxial test in case of other confining stress and cyclic loading condition were conducted. Also numerical simulations of fluid injection into particulate materials were conducted to observe cavity initiation and propagation using distinct element method. The fluid scheme solves the continuity and Navior-Stokes equations numerically, then derives pressure and velocity vectors for fixed grid by considering the existence of particles within the fluid cell.

  • PDF

FLUID-STRUCTURE INTERACTION ANALYSIS OF EXTERNAL GEAR PUMP (회전용적형 기어펌프의 유체-구조연동 전산해석)

  • Lee, J.H.;Kim, T.G.;Lee, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.83-85
    • /
    • 2010
  • A hydraulic gear pump is widely used in many industrial applications to provide both high pressure and high flow rate by physical displacement of finite volume of fluid with each revolution. In this study, two dimensional fluid-structure interaction simulation of gear pump flow was carried out to examine detailed complex flow patterns and structural stress distribution on rotors by using a commercial software ADINA. The effect of rotor clearance size on the flow characteristics, specially the temporal variation of velocity and pressure field, which is a main source of flow noise, also was investigated.

  • PDF

Fluid Flow and Temperature Distribution around a Surface-Mounted Module Cooled by Forced Air Flow in a Portable Personal Computers (휴대용 PC내에 실장된 강제공랭 모듈 주위의 유체유동과 온도분포)

  • Park S.H.;Shin D.J.;Lee I.T.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.729-732
    • /
    • 2002
  • This paper reports an experimental study around a module about forced air flow by blower($35{\times}35{\times}6mm^3$) in portable PC(10mm high, 200mm wide, and 235mm long). The channel inlet flow velocity has been varied between 0.26, 0.52 and 0.78m/s. The power input to the module is 4Wthis report, particular attention is directed to the fluid flow and adiabatic wall temperature($T_(ad)$) around a module which is under fluid mechanical and thermal influences of the module. The fluid flow around a module was visualized using PIV system. Liquid crystal thernography is used to determine the adiabatic wall temperature around a heated module on an acrylic board. Plots of $T_(ad)$ (or F) show marked effects of dispersion of thermal wake near the module.

  • PDF

Transient Response Analysis of Cylindrical Liquid Fuel-Storage Tank subject to Initial Acceleration (원통형 액체 연료탱크의 초기 가속에 따른 과도응답 해석)

  • Lee, S.Y.;Joo, Y.S.;Kim, K.W.;Cho, J.R.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.475-480
    • /
    • 2000
  • The transient dynamic-response analysis of fuel-storage tanks of flying vehicles accelerating in the vertical direction is achieved with finite element method. A fuel-storage tank is a representative example of the fluid-structure interaction problem, in which structure and fluid media interact strongly. For the accurate analysis of this complicated fluid-structure system, we employed ALE(arbitrary Lagrangian-Eulerian) coupling method. Two types of fuel-storage tanks, one with two baffles and the other without baffle, are considered to examine the effect of baffles. The fuel-storage tank with baffles shows more uniform hydrodynamic pressure distribution, resulting effective stress in structural region and faster convergence from transient to steady states. MSC/Dytran, a commercial FEM software for the 3D coupled dynamic analysis, is used for this analysis.

  • PDF

Direct Numerical Simulation of Flow Characteristics of the Fluid Laden with Many Particles (입자가 포함된 유체의 유동특성에 대한 직접수치해석)

  • Cho, Sang-Ho;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1327-1334
    • /
    • 2003
  • Flow characteristics of the fluid laden with many particles in the two-dimensional channel are investigated using the Navier-Stokes equations coupled with the equation of motion of particles by direct numerical simulation. A four-step fractional step method with Crank-Nicolson scheme and ALE technique is used for P2P1 mixed finite element method. The motion and distribution of particles in the fluid is virtually described as a result of direct numerical simulation and the increase of viscosity is compared with theoretical equations. The effect of channel height on the relative viscosity and the tubular pinch effect are discussed.

Fully coupled FSI analysis of Francis turbines exposed to sediment erosion

  • Chitrakar, Sailesh;Cervantes, Michel;Thapa, Biraj Singh
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.3
    • /
    • pp.101-109
    • /
    • 2014
  • Sediment erosion is one of the key challenges in hydraulic turbines from a design and maintenance perspective in Himalayas. The present study focuses on choosing the best design in terms of blade angle distribution of a Francis turbine runner which has least erosion effect without influencing the efficiency and the structural integrity. A fully coupled Fluid-Structure-Interaction (FSI) analysis was performed through a multi-field solver, which showed that the maximum stress induced in the optimized design for better sediment handling, is less than that induced in the reference design. Some numerical validation techniques have been shown for both CFD and FSI analysis.

Effect of body acceleration on pulsatile flow of Casson fluid through a mild stenosed artery

  • Nagarani, P.;Sarojamma, G.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.189-196
    • /
    • 2008
  • The pulsatile flow of blood through a stenosed artery under the influence of external periodic body acceleration is studied. The effect of non-Newtonian nature of blood in small blood vessels has been taken into account by modeling blood as a Casson fluid. The non-linear coupled equations governing the flow are solved using perturbation analysis assuming that the Womersley frequency parameter is small which is valid for physiological situations in small blood vessels. The effect of pulsatility, stenosis, body acceleration, yield stress of the fluid and pressure gradient on the yield plane locations, velocity distribution, flow rate, shear stress and frictional resistance are investigated. It is noticed that the effect of yield stress and stenosis is to reduce flow rate and increase flow resistance. The impact of body acceleration is to enhance the flow rate and reduces resistance to flow.

A study on the Motions of a ship with Liquid Cargo Tanks (화물창의 유체유동을 고려한 선체운동에 관한 연구)

  • 박명규;김순갑;김동준
    • Journal of the Korean Institute of Navigation
    • /
    • v.10 no.2
    • /
    • pp.139-155
    • /
    • 1986
  • In this paper the dynamic effects due to the free water motions in tanks upon the lateral motion of a floating body in regular waves are calculated, in order to obtain the relationship between a motion of a floating body and that of the free water in tanks. Under the assumption that the fluid is ideal and motion amplitudes are small, velocity potential of the fluid in tanks is calculated by the source distribution method and the hydrodynamic forces and moments are calculated by the integration of fluid pressures over the tank surface. Hydrodynamic effects of the fluid on the floating body are expressed in terms of added mass and coupling coefficient obtained from the integration. Computations are carried out for ship with seven wide center tanks and comparisons between the liquid cargo loading case and the rigid cargo loading case are shown.

  • PDF

Strength prediction of steady laminar fluid with normal velocity distribution: A simplified truncation technique

  • Mohamed A. Khadimallah;Muzamal Hussain;Elimam Ali;Abdelouahed Tounsi
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.313-319
    • /
    • 2023
  • In this paper, the analytic solution has been found by using truncation approach. With the help of suitable substitution, different physical parameters are yielded in their non-dimensional form. The governing boundary layer partial differential equations are reduced to a set of ordinary ones by using appropriate similarity transformations. The velocity profile across the domain have also been taken into account. The effect normal velocity profiles buoyancy parameter, slip parameter, shrinking parameter, Casson fluid parameter on the heat profile. It is found that the normal velocity profiles rise with the buoyancy parameter and for the slip parameter. It is observed that the normal velocity profile decreases with the increase of shrinking parameter. The reverse behiour is found for the Casson fluid parameter. The results are numerically computed, analyzed and discussed. For the efficiency of present model, the results are compared with earlier investigations.