• Title/Summary/Keyword: Fluid Control System

Search Result 1,185, Processing Time 0.03 seconds

Position Control of Capsule Filled with Magnetic Fluid for Targeted Drug Delivery System (지적투약시스템을 위한 자성유체 캡슐의 위치 제어)

  • Ahn Chang-ho;Nam Yun-Joo;Park Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1166-1173
    • /
    • 2004
  • In this paper, in order to apply magnetic fluid with superparamagnetic property as the substitute of ferromagnetic materials, physical properties of magnetic fluid are investigated. A targeted drug delivery system using a capsule filled magnetic fluid is proposed where a magnetic fluid capsule and cylinders are considered as a drug and vital organs, respectively. The dynamic governing equation of this system first is derived. Fluid viscosity, clearance between a cylinder and a magnetic fluid capsule, and levitation height with respect to different cylinder height are considered as major parameters to evaluate dynamic characteristics of the system. The experiments and simulations for the position control of the magnetic fluid capsule in various cylinders are conducted using PID controller. The results show that magnetic fluid with the superparamagnetic property can be applied to a targeted drug delivery system.

Infinitesimal Fluid Injection Control System by using an Orifice and a Directional Control Valve (오리피스와 방향제어밸브를 이용한 미세유량 분사제어시스템)

  • Jeong, Eun-Seok;Oh, In-Ho;Lee, Ill-Yeong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.67-68
    • /
    • 2006
  • This study suggests a precision flow control system that enables fluid injection of a few grams at a time in a few ms time duration. The fluid injection system suggested here consists of a high pressure fluid pump, a 3 way 3 position directional control valve, an injector and an orifice. The orifice is located between the directional control valve and the injector. By supplying current signal to the directional control valve, the prescribed small amount of fluid can be supplied to a plant through the injector. The control robustness of the suggested system against the disturbances like the pressure change in a plant and the viscosity variation of the injected fluid is secured easily by using an orifice with very small inside diameter and setting the supply pressure with comparatively high value. The control performances of the suggested system are verified by numerical simulations and experiments. The outcomes of this research could be applied to the common rail injection control of lubrication oil for large size marine diesel engines, and other industrial plants.

  • PDF

A Study on The Vibration Reduction of a Driver Seat Controlling an MR Fluid Damper (자기유변유체 댐퍼를 이용한 운전석의 진동감쇠에 대한 연구)

  • 안병일;전도영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.861-866
    • /
    • 2002
  • A seat suspension system with a controlled MR(Magneto Rheological) fluid damper is introduced to improve the ride quality and prevent the health risk of a driver compared to fixed seats. The system is located between a seat cushion and the base, and is composed of a spring, MR fluid damper and controller. The MR fluid damper designed in valve mode is capable of producing a wide range of damping force according to applied currents. In experiments, a person was sitting on the controlled seat excited by a hydraulic system The skyhook control, continuous skyhook control and relative displacement control were applied and the continuous skyhook control improved the vibration suppression by 36.6%.

Path Control of MR Fluid Jet Polishing System for the Polishing of an Aspherical Lens Mold Core (비구면 렌즈 몰드 코어 연마를 위한 MR Fluid Jet Polishing System의 경로 제어에 관한 연구)

  • Kim, K. B.;Cho, M. W.;Ha, S. J.;Cho, Y. K.;Song, K. H.;Yang, J. K.;Cai, Y.;Lee, J. W.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.431-436
    • /
    • 2015
  • MR fluid can change viscosity in the presence of a magnetic field. A characteristic of MR fluid is reduced scattering during jetting. For these reasons a MR fluid jet polishing system can be used for ultra-precision polishing. In the current paper, the polishing path was calculated considering the aspherical lens profile equation and the experimental conditions for the MR fluid jet polishing system. Then the polishing of an aspherical lens mold core using the MR fluid jet polishing system with the calculated path control was made and the results were compared before and after polishing.

A Study on the Pressure Control of a Pneumatic Pressure Vessel Considering Dynamic Characteristics of Pneumatic Transmission Line (관로부의 동특성을 고려한 공기압 압력용기의 압력제어)

  • Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.90-96
    • /
    • 2001
  • In this study, a robust controller to control pressure in a pneumatic pressure vessel considering dynamic characteristics of pneumatic transmission line is proposed. Dynamic characteristics of transmission line using compressible fluid is changed by the flowing states of the fluid. So, if the fixed gain controller is designed based on a fixed model, the performance of the control system could be destabilized or degraded. The controller designed in this study is composed of two parts. The one is to reject modelling error based on the disturbance observer, the other is to obtain the control performance. The control results with the designed controller show that the robustness of the control system is achieved regardless of the change of the model of the transmission line. Therefore, the designed controller can be utilized for the performance improvement of the pressure control system using compressible fluid such as air and gas

  • PDF

Adaptive digital control system of flow rates for an OTEC plant

  • Nakamura, Masatoshi;Uehara, Haruo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.753-758
    • /
    • 1987
  • The purpose of ocean thermal energy conversion (OTEC) plant control is to provide stable power efficiently by appropriately regulating the seawater flow rates and the working fluid flow rate under conditions of continually changing seawater temperatures. This paper describes digital control of working fluid flow rate based on an adaptive control theory for the "Imari 2" OTEC plant at Saga University. Provisions have been made for linkage between the software of the adaptive control theory and the hardware of the OTEC plant. In implementing the working fluid flow rate control, if persistency of excitation conditions are lost, the algorithm of identification often exhibits bursting phenomena. To avoid this difficulty, the stopping-and-starting rule for identification was derived and was used for the working fluid flow rate control. Satisfactory control performance was then obtained by using this digital control system.ol system.

  • PDF

Performance of Squeeze Film Damper Using Magneto-Rheological Fluid (MR유체를 이용한 스퀴즈필름 댐퍼의 응답특성)

  • 안영공;양보석;신동춘;김동조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.67-70
    • /
    • 2002
  • This paper presents the property of the Squeeze Film Damper (SFD) using Magneto-Rheological fluid (MR fluid). The damping property of a SFD for a flexible rotor system varied according to vibration mode. MR fluid is known as a functional fluid with controllable apparent viscosity of the fluid by applied magnetic field strength. When the MR fluid is applied in the SFD, the SFD using MR fluid can effectively reduce vibrations of the flexible rotor in a wide range of rotating speed by control of the applied magnetic field strength. To investigate in detail the SFD using MR fluid, the SFD to support one mass was constructed and its performance was experimentally investigated in the present study. The damping property of the SFD using MR fluid has viscous damping by Newtonian fluid, but not Coulomb friction by Bingham fluid. Therefore, The system damped by the SFD can be considered as a linear system.

  • PDF

Control Characteristics of Fluid Power Cylinder Moving Up and Down (상하운동하는 유압실린더의 제어특성)

  • Yum, Man-Oh;Yoon, Il-Ro;Lee, Seok-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1152-1158
    • /
    • 2004
  • In this study a MRAC(model reference adaptive control) for fluid power elevator model system was designed. The MRAC was compared with PI control in case of applying to the elevator model system with constant external load and changing external load. In this case external load was produced by a single fluid power cylinder combined with pressure control valve. In conclusion the MRAC control performance was better than PI control performance because overshoot and steady state error of the elevator model system controlled by the MRAC were not appeared for constant and changing external load.

A Study on the Control Characteristics of FHA by Using ERF and Industrial Controller (ERF와 산업용 콘트롤러를 이용한 FHA의 제어특성에 관한 연구)

  • Jang Sung-Cheol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.95-100
    • /
    • 2005
  • Making the best use of the features of the electro-rheological(ER) valve, a two-port pressure control valve using ER fluids is proposed and manufactured. The ER-Valve characteristics are evaluated by changing the intensity of the electric field and the number of electrode. In addition, the performance of the plate type ER-Valve is investigated by change the particle concentration of the ER fluid. As only with electrical signal change to the ER-Valve in which ER fluid flowing, ER fluid flow is controlled, so development of simple ER-Valves have been tried. The ER-Valves and pressure drop check method are considered to be applied to the fluid power control system. Using the minかnぉd pressure control valve, a one-link manipulator with FHA in robot system is driven. As a result, it is experimentally confirmed that the pressure control valve using ER fluids is applicable to use in driving actuator. If it applies characteristics of the ER fluids, it will be able to apply in the control system fir the ER Valve which occurs from industrial controller(PLC).

Position control of an ER valve bridge-cylinder system via neural network (신경제어기법을 이용한 ER 밸브 브리지-실린더 시스템의 위치제어)

  • 최우연;최승복;정재천
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1441-1444
    • /
    • 1996
  • This paper presents the position control of a double-rod cylinder system activated by an electrotheological(ER) valve unit. Following the composition of a silicone oil-based ER fluid, theological properties of the ER fluid are experimentally tested as a function of imposed electric fields to determine appropriate design parameters of the ER valve. The ER valves are then designed and manufactured. Subsequently, the pressure drop of the ER valve is evaluated with respect to the intensity of the electric field. Four ER valves bridge-cylinder system is formulated, and the governing equations for the system are derived. A neural network control scheme is then synthesized to perform the position control of the cylinder system. Tracking control responses are experimentally evaluated and presented in order to demonstrate the effectiveness of the proposed control system.

  • PDF