• 제목/요약/키워드: Fluid Compressibility

검색결과 73건 처리시간 0.039초

ADAMS를 이용한 다축 시뮬레이터에 관한 연구 (A Study on Multi-Axiles using ADAMS)

  • 정찬범;유승환;이경백;김영배
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.288-291
    • /
    • 2001
  • Vehicle evaluation is performed on the proving ground, and durability test and dynamic test cost lots of money and time. Doing replace real vehicle experiment with similar experiment environment, it will take us much more useful advantages. Suspension simulator is required the robust and high-reliability and used widely. But it's natural of high-leveled control technique to manage to be fitted fluid system's property and complex that is for the lack of self-damping, nonlinearity, compressibility. In designing and evaluating simulator, it is important to understand the capability of kinematic and static performances. In this paper, an kinematic modeling and analysis has been presented using ADAMS to design that can reproduce longitudinal, lateral, and vertical force.

  • PDF

베인 펌프에서 노치와 반경 감소비의 역활에 관한 연구 (A Study on the Role of Notch and Radius Reduction Ratio in the Balanced Type Vane Pump)

  • 김기동;조명래;문호지;배홍용
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.533-539
    • /
    • 1997
  • Pressure ripple of hydraulic vane pump results form flow ripple due to pump geometry and reverse flow through the discharge port due to compressibility of fluid and result in vibration and noise of connected hydraulic elements. In a ba;anced type vane pump, cam ring curve is important factor to influence the flow ripple. Therefore, to reduce the now ripple, it has been required that optimal selection of seal region by proper design of cam ring and each port position, and notches for preventing the excessive reverse flow. This paper has been performed analytical study of compression characteristics with major design parameter in side plate and cam ring, and examined into the role of notch and radius reduction ratio.

  • PDF

베인 펌프에서 노치와 반경 감소비의 역할에 관한 연구 (A Study on the Role of Notch and Radius Reduction Ratio in the Balanced Type Vane Pump)

  • 김기동;조명래;한동철;최상현;문호지
    • 한국정밀공학회지
    • /
    • 제15권1호
    • /
    • pp.87-93
    • /
    • 1998
  • Pressure ripples of hydraulic vane pump results from flow ripples due to pump geometry and reverse flow through the discharge port due to compressibility of fluid and result in vibration and noise of connected hydraulic elements. In a balanced type vane pump, cam ring curve is important factor to influence the flow ripples. Therefore, to reduce the flow ripple, it has been required that optimal selection of seal region by proper design of cam ring and each port position, and notches for preventing the excessive reverse flow. This paper has been performed analytical study of compression characteristics with major design parameter in side plate and cam ring. and examined into the role of notch and radius reduction ratio.

  • PDF

공기압 구동장치를 이용한 정밀위치제어 (Accurate Positioning with a Pneumatic Driving Apparatus)

  • 장지성
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권4호
    • /
    • pp.21-27
    • /
    • 2015
  • The accurate position control of pneumatic driving apparatus is considered in this paper. In pneumatically actuated positioning systems, accurate positioning as an electrical servo has been known to be difficult because of the friction force and compressibility of the air. For good control performance of the pneumatic system, an actuator mounted with externally pressurized air bearings is produced to compensate for friction force. For the controller design, the governing equation of the pneumatic driving apparatus is derived. In order to reduce the nonlinear characteristics of the control valve, linearized control input is derived from the relation between the effective area of the valve and the control input. The experimental results are presented to show the results of the improved position control of the pneumatic driving apparatus.

범프포일베어링의 탄성유체윤활 특성 (Elasto-Hydrodynamic Lubrication Characteristics of Bump Foil Bearings)

  • 김영철;이동현;김경웅
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.98-103
    • /
    • 2004
  • This paper presents modeling and simulation of the bump foil bearings with consideration of the elastic behavior of the foil and gas compressibility. Heshmat had originally introduced the simple compliance model to estimate the EHL(elasto-hydrodynamic lubrication) performance. But this approach can not consider the deflection of top foil at the edge of bearing, so model is insufficient to analyze in case that the eccentricity ratio is greater than I. So the top foil is considered as a simple beam model supported by linear spring elements, and the bump foil deflection can be simple compliance model. The EHL calculations are performed for convention rigid type, classical foil type, variable pitch type and double bump type toil bearings. This paper presents that 2nd or 3rd generation bearings have excellent performance in every speeds.

  • PDF

평판에 충돌하는 음속/초음속 제트유동에 관한 연구 (Study on Sonic/Supersonic Impinging Jets on a Flat Pate)

  • 김희동;이호준;서태원;금기헌
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1998년도 제10회 학술강연회논문집
    • /
    • pp.15-15
    • /
    • 1998
  • The problem of the impingement of a sonic or a supersonic jet on a flat surface has not only wide applications but has also interesting and very complex flow phenomena. The main applications of this impinging jet include prediction of solid surface erosion, design of launcher systems, stage separation of multi-stage rocket system, V/STOL operations, thermal spray system, and manufacturing technologies of materials. Much have been learned about the supersonic impinging jet flow field but many fundamental questions have not been answered satisfactorily. The problem encompasses many facets of fluid dynamics which, in combination, present the compressibility effect and the viscous-inviscid interaction, coupled with flow separation and reattachment. What is more, there are many flow parameters that have on the impinging jet flow field, for example, Mach number, Reynolds number, pressure ratio, distance between the nozzle exit and flat plate, jet shock structure, nozzle diameter and etc. Thus the existing data on the supersonic impinging jet flow present considerable disagreement in which quantitative comparison between one result and another is often impossible.

  • PDF

사출성형의 충전시 고분자용융액의 압축성이 유동장과 단섬유 배향에 미치는 영향 (Effect of Compressibility on Flow Field and Fiber Orientation in the Filling Stage of Injection Molding)

  • 이상찬;고진;윤재륜
    • 유변학
    • /
    • 제10권4호
    • /
    • pp.217-226
    • /
    • 1998
  • 단섬유 강화 고분자의 사출성형시 고분자 수지의 유동에 의하여 섬유배향이 필연적으로 일어나며, 섬유배향에 의한 이방성 (anisotropy)은 최종성형물의 품질과 기계적인 특성 등에 많은 영향을 미친다. 사출공정 중에서 충전과정(filling stage)은 섬유배향에 지배적인 역할을 하므로, 충전과정의 유동장을 정확하게 해석하는 것은 매우 중요하다. 형상이 복잡한 캐비티(cavity)와 다중 캐비티에서는 먼저 충전이 완료되어 현탁액(suspension)이 압축을 받고 있는 영역들이 존재하게 된다. 기존의 방법처럼 사출성형의 충전과정을 비압축성 유동으로 가정하면 정확한 유동장을 계산할 수 없다. 본 연구에서는 충전과정에서 압축성을 고려한 혼합 유한요소법/유한차분법을 이용하여 유동장을 계산하였다. 충전이 완료되는 순간에서, 이차배향텐서에 대한 배향변화방정식을 4차 Runge-Kutta 방법을 이용하여 해석함으로써 3차원 섬유배향장을 예측하였다. 충전시간이 다른 4개의 캐비티를 갖는 금형을 제작하여 충전과정에서 압축성 효과를 고려한 수치해석 결과가 실험과 잘 일치함을 보였다. 또한, 압축성과 비압축성 유동장에서 이론적으로 계산된 섬유배향의 차이를 정성적 및 정량적으로 비교하였다.

  • PDF

비정렬 격자계에서 균질혼합 모델을 이용한 수중 운동체의 거동에 관한 수치적 연구 (A COMPUTATIONAL STUDY ABOUT BEHAVIOR OF AN UNDERWATER PROJECTILE USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES)

  • 조성민;최재훈;권오준
    • 한국전산유체공학회지
    • /
    • 제21권3호
    • /
    • pp.15-23
    • /
    • 2016
  • In the present study, two phase flows around a projectile vertically launched from an underwater platform have been numerically investigated by using a three dimensional multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom equations of motion with Euler angles and a chimera technique. The propulsive power of the projectile was modeled as the fluid force acting on the lower surface of the body by the compressed air emitted from the underwater platform. Various flow conditions were considered to analyze the fluid-dynamics motion parameters of the projectile. The water level of platform and the current speed around the projectile were the main parametric variables. The numerical calculations were conducted up to 0.75sec in physical time scale. The dynamics tendency of the projectile was almost identical with respect to the water level variation due to the constant buoyancy term. The moving speed of the projectile along the vertical axis inside the platform decreased when the current speed increased. This is because the inflow from outside of the platform impeded development of the compressed air emitted from the floor surface of the launch platform. As a result, the fluid force acting on the lower surface of the projectile decreased, and injection time of the projectile from the platform was delayed.

Compressible Simulation of Rotor-Stator Interaction in Pump-Turbines

  • Yan, Jianping;Koutnik, Jiri;Seidel, Ulrich;Hubner, Bjorn
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권4호
    • /
    • pp.315-323
    • /
    • 2010
  • This work investigates the influence of water compressibility on pressure pulsations induced by rotor-stator interaction (RSI) in hydraulic machinery, using the commercial CFD solver ANSYS-CFX. A pipe flow example with harmonic velocity excitation at the inlet plane is simulated using different grid densities and time step sizes. Results are compared with a validated code for hydraulic networks (SIMSEN). Subsequently, the solution procedure is applied to a simplified 2.5-dimensional pump-turbine configuration in prototype with different speeds of sound as well as in model scale with an adapted speed of sound. Pressure fluctuations are compared with numerical and experimental data based on prototype scale. The good agreement indicates that the scaling of acoustic effects with an adapted speed of sound works well. With respect to pressure fluctuation amplitudes along the centerline of runner channels, incompressible solutions exhibit a linear decrease while compressible solutions exhibit sinusoidal distributions with maximum values at half the channel length, coinciding with analytical solutions of one-dimensional acoustics. Furthermore, in compressible simulation the amplification of pressure fluctuations is observed from the inlet of stay vane channels to the spiral case wall. Finally, the procedure is applied to a three-dimensional pump configuration in model scale with adapted speed of sound. Normalized Pressure fluctuations are compared with results from prototype measurements. Compared to incompressible computations, compressible simulations provide similar pressure fluctuations in vaneless space, but pressure fluctuations in spiral case and penstock may be much higher.

Seismic fragility evaluation of arch concrete dams through nonlinear incremental analysis using smeared crack model

  • Moradloo, Javad;Naserasadi, Kiarash;Zamani, Habib
    • Structural Engineering and Mechanics
    • /
    • 제68권6호
    • /
    • pp.747-760
    • /
    • 2018
  • In the present study, a methodology for developing fragilities of arch concrete dams to assess their performance against seismic hazards is introduced. Firstly, the probability risk and fragility curves are presented, followed by implementation and representation of the way this method is used. Amirkabir arch concrete dam was subjected to non-linear dynamic analyses. A modified three dimensional rotating smeared crack model was used to take the nonlinear behavior of mass concrete into account. The proposed model considers major characteristics of mass concrete. These characteristics are pre-softening behavior, softening initiation criteria, fracture energy conservation, suitable damping mechanism and strain rate effect. In the present analysis, complete fluid-structure interaction is included to account for appropriate fluid compressibility and absorptive reservoir boundary conditions. In this study, the Amirkabir arch concrete dam is subjected to a set of 8 three-component earthquakes each scaled to 10 increasing intensity levels. Using proposed nonlinear smeared crack model, nonlinear analysis is performed where the structure is subjected to a large set of scaled and un-scaled ground motions and the maximum responses are extracted for each one and plotted. Based on the results, fragility curves were plotted according to various and possible damages indexes. Discrete damage probabilities were calculated using statistical methods for each considered performance level and incremental nonlinear analysis. Then, fragility curves were constructed based on the lognormal distribution assumption. Two damage indexes were introduced and compared to one another. The results indicate that the dam has a proper stability under earthquake conditions at MCE level. Moreover, displacement damages index is more conservative and impractical in the fragility analysis than tensional damage index.