• Title/Summary/Keyword: Fluid Compressibility

Search Result 73, Processing Time 0.034 seconds

Dynamic Modeling of ER Damper Considering Fluid Compressibility (유체의 압축성을 고려한 ER 댐퍼의 동적 모델링)

  • Seong, Min-Sang;Ha, Sung-Hun;Nguyen, Quoc-Hung;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.659-666
    • /
    • 2009
  • This paper proposes a new method for dynamic modeling of electrorheological(ER) damper considering fluid compressibility. After describing configuration and operating principle of the ER damper, a quasi-static modeling of the ER damper is conducted on the basis of Bingham model of ER fluid. Subsequently, the dynamic model for describing the ER damper considering compressibility of ER fluid and gas chamber is obtained using the lumped parameter method. This method includes dynamic motions of annular duct, upper chamber, lower chamber and connecting pipe. The hysteresis behavior of the ER damper is evaluated through computer simulations and compared with experimental results. In addition, the hysteresis behavior due to the compressibility of ER fluid and gas chamber is investigated through computer simulations.

Dynamic Modeling of ER Damper Considering Fluid Compressibility (유체의 압축성을 고려한 ER 댐퍼의 동적 모델링)

  • Seong, Min-Sang;Ha, Sung-Hun;Nguyen, Quoc Hung;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.438-443
    • /
    • 2009
  • This paper proposes a new method for dynamic modeling of electrorheological (ER) damper considering fluid compressibility. After describing configuration and operating principle of the ER damper, a quasi-static modeling of the ER damper is conducted on the basis of Bingham model of ER fluid. Subsequently, the dynamic model for describing the ER damper considering compressibility of ER fluid and gas chamber is obtained using the lumped parameter method. This method includes dynamic motions of annular duct, upper chamber, lower chamber and connecting pipe. The hysteresis behavior of the ER damper is evaluated through computer simulations and compared with experimental results. In addition, the hysteresis behavior due to the compressibility of ER fluid and gas chamber is investigated through computer simulations.

  • PDF

Air Compressibility Effect in CFD-based Water Impact Analysis (CFD 기반 유체충격 해석에서 공기 압축성 효과)

  • Tran, Huu Phi;Ahn, Hyung-Taek
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.581-591
    • /
    • 2011
  • This paper describes the air compressibility effect in the CFD simulation of water impact load prediction. In order to consider the air compressibility effect, two sets of governing equations are employed, namely the incompressible Navier-stokes equations and compressible Navier-Stokes equations that describe general compressible gas flow. In order to describe violent motion of free surface, volume-of-fluid method is utilized. The role of air compressibility is presented by the comparative study of water impact load obtained from two different air models, i.e. the compressible and incompressible air. For both cases, water is considered as incompressible media. Compressible air model shows oscillatory behavior of pressure on the solid surface that may attribute to the air-cushion effect. Incompressible air model showed no such oscillatory behavior in the pressure history. This study also showed that the CFD simulation can capture the formation of air pockets enclosed by water and solid surface, which may be the location where the air compressibility effect is dominant.

ON RIVLIN-ERICKSON ELASTICO-VISCOUS FLUID HEATED AND SOLUTED FROM BELOW IN THE PRESENCE OF COMPRESSIBILITY, ROTATION AND HALL CURRENTS

  • Gupta, Urvashi;Sharma, Gaurav
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.51-66
    • /
    • 2007
  • A layer of compressible, rotating, elastica-viscous fluid heated & soluted from below is considered in the presence of vertical magnetic field to include the effect of Hall currents. Dispersion relation governing the effect of viscoelasticity, salinity gradient, rotation, magnetic field and Hall currents is derived. For the case of stationary convection, the Rivlin-Erickson fluid behaves like an ordinary Newtonian fluid. The compressibility, stable solute gradient, rotation and magnetic field postpone the onset of thermosolutal instability whereas Hall currents are found to hasten the onset of thermosolutal instability in the absence of rotation. In the presence of rotation, Hall currents postpone/hasten the onset of instability depending upon the value of wavenumbers. Again, the dispersion relation is analyzed numerically & the results depicted graphically. The stable solute gradient and magnetic field (and corresponding Hall currents) introduce oscillatory modes in the system which were non-existent in their absence. The case of overstability is discussed & sufficient conditions for non-existence of overstability are derived.

Fabrication and Characterization of Taraxacum platycarpum Extract-loaded Particles for Tablet Dosage Form (정제 제형 제조를 위한 포공영 추출물 함유 분말의 제조 및 평가)

  • Jin, Sung Giu
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.225-230
    • /
    • 2019
  • To develop Taraxacum platycarpum extract (TP)-loaded particles for tablet dosage form, various TP-loaded particles composed of TP, dextrin, microcrystalline cellulose (MCC), silicon dioxide, ethanol, and water are prepared using a spray-drying method and fluid-bed-drying method. Their physical properties are evaluated using angle of repose, Hausner ratio, Carr's index, hardness, disintegrant time, and scanning electron microscopy. Optimal TP-loaded particles improve flowability and compressibility. Furthermore, 2% silicon dioxide gives increased flowability and compressibility. The formula of TP-loaded fluid-bed-drying particles at a TP/MCC/silicon-dioxide amount of 5/5/0.2 improves the angle of repose, Hausner ratio, Carr's index, hardness, and disintegrant time as compared with the TP-loaded spray-drying particles. The TP-loaded fluid-bed-drying particles considerably improve flowability and compressibility ($35.10^{\circ}$ vs. $40.3^{\circ}$, 0.97 vs. 1.17, and 18.97% vs. 28.97% for the angle of repose, Hausner ratio, and Carr's index, respectively), hardness (11.34 vs. 4.7 KP), and disintegrant time (7.4 vs. 10.4 min) as compared with the TP-loaded spray-drying particles. Thus, the results suggest that these fluid-bed-drying particles with MCC and silicon dioxide can be used as powerful particles to improve the flowability and compressibility of the TP.

Anisotropic Phase Transitions of Hard-Spheres Confined in Hard Walls

  • Yun, Byeong Jip
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1375-1379
    • /
    • 2001
  • Monte Carlo simulations of hard-spheres confined in parallel hard walls have been carried out extensively at various densities and for various wall distances. The compressibility factors in the directions parallel and normal to the wall have been calculated from the radial free space distribution function (RFSDF) with the results showing that the compressibility factors normal to the wall are smaller than those in parallel direction and that a solid phase is formed in the direction normal to the wall while a fluid phase remains in the parallel direction. An order parameter is found to classify the phases whether a system (or a molecule) is in a fluid or a solid state. The compressibility factors of narrow wall are very small compared to those when the wall is put away. A plausible mechanism of the rise of sap in xylem vessel has been proposed.

Convergence Characteristics of Upwind Method for Modified Artificial Compressibility Method

  • Lee, Hyung-Ro;Lee, Seung-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.318-330
    • /
    • 2011
  • This paper investigates the convergence characteristics of the modified artificial compressibility method proposed by Turkel. In particular, a focus is mode on the convergence characteristics due to variation of the preconditioning factor (${\alpha}_u$) and the artificial compressibility (${\beta}$) in conjunction with an upwind method. For the investigations, a code using the modified artificial compressibility is developed. The code solves the axisymmetric incompressible Reynolds averaged Navier-Stokes equations. The cell-centered finite volume method is used in conjunction with Roe's approximate Riemann solver for the inviscid flux, and the central difference discretization is used for the viscous flux. Time marching is accomplished by the approximated factorization-alternate direction implicit method. In addition, Menter's k-${\omega}$ shear stress transport turbulence model is adopted for analysis of turbulent flows. Inviscid, laminar, and turbulent flows are solved to investigate the accuracy of solutions and convergence behavior in the modified artificial compressibility method. The possible reason for loss of robustness of the modified artificial compressibility method with ${\alpha}_u$ >1.0 is given.

Influence of Compressibility Modification to k-ε Turbulence Models for Supersonic Base Flow

  • Jeon, Sang-Eon;Park, Soo-Hyung;Byun, Yung-Hwan;Kwon, Jang-Hyuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.188-198
    • /
    • 2012
  • An improvement to the k-${\varepsilon}$ turbulence model is presented and is shown to lead to better agreement with data regarding supersonic base flows. The improvement was achieved by imposing a grid-independent realizability constraint in the Launder-Sharma k-${\varepsilon}$ model. The effects of compressibility were also examined. The numerical results show that the modified Launder-Sharma model leads to some improvement in the prediction of the velocity and turbulent kinetic energy profiles. Compressibility corrections also lead to better agreement in both the turbulent kinetic energy and the Reynolds stress profiles with the experimental data.

Axisymmetrical free-vibration analysis of liquid-storage tanks considering the liquid compressibility

  • Cho, Jin-Rae;Lee, Jin-Kyu
    • Structural Engineering and Mechanics
    • /
    • v.13 no.4
    • /
    • pp.355-368
    • /
    • 2002
  • In this paper, we address the numerical investigation on the effect of liquid compressibility onto the natural frequency of liquid-filled containers. Traditionally the liquid motion has been treated as an ideal fluid motion. However, from the numerical experiments for the axisymmetrical free-vibration of cylindrical liquid-storage tanks, we found that the relative difference in natural frequencies between ideal and compressible motions becomes remarkable, as the slenderness of tank or the relative liquid-fill height becomes larger. Therefore, in such cases of dynamic systems, the liquid compressibility becomes an important parameter, for the accurate vibration analysis. For the free-vibration analysis of compressible liquid-structure interaction we employed the coupled finite element formulation expressed in terms of the acoustic wave pressure and the structure deformation.

Analysis of Three-dimensional Earthquake Responses of a Floating Offshores Structure with an Axisymmetric Floating Structure (축대칭 부유구조물을 가지는 부유식 해양구조물의 3차원 지진응답 해석기법 개발)

  • Lee, Jin Ho;Kim, Jae Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.145-159
    • /
    • 2015
  • A seismic response analysis method for three-dimensional floating offshore structures due to seaquakes is developed. The hydrodynamic pressure exerted on the structure is calculated taking into account the compressibility of the sea water, the fluid-structure interaction, the energy absorption by the seabed, and the energy radiation into infinity. To validate developed method, the hydrodynamic pressure induced by the vibration of a floating massless rigid circular disk is calculated and compared with an exact analytical solution. The developed method is applied to seismic analysis of a support structure for a floating offshore wind turbine subjected to the hydrodynamic pressures induced from a seaquake. Analysis results show that earthquake response of a floating offshore structure can be greatly influenced by the compressibility of fluid, the depth (natural frequencies) of the fluid domain, and the energy absorption capacity of the seabed.