• Title/Summary/Keyword: Fluid Atomization

Search Result 154, Processing Time 0.022 seconds

Prediction of Flow Rate and Drop Size of Low Viscosity Liquid Through Y-Jet Atomizers (Y-Jet노즐을 통한 저점도 액체의 유량 및 입경예측에 관한 연구)

  • 송시홍;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3377-3385
    • /
    • 1994
  • This paper introduces empirical correlations to obtain the gas/liquid flow rates and the spray drop size of low viscosity liquid injected by Y-jet twin-fluid atomizers. The gas flow rate is well correlated with the gas injection pressure and the mixing point pressure, based on the compressible flow theory. Similarly, the liquid flow rate is determined by the liquid injection pressure and the mixing point pressure, and a simple correlation for the liquid discharge coefficient at the liquid port was deduced from the experimental results. The mixing point pressure, which is one of the essential parameters, was expressed in terms of the gas/liquid flow rate ratio and the mixing port length. Disintegration and atomization mechanisms both within the mixing port and outside the atomizer were carefully re-examined, and a "basic" correlation form representing the mean diameter of drops was proposed. The "basic" correlation was expressed in terms of the mean gas density within the mixing port, gas/liquid mass flow rate ratio and the Weber number. Though the correlation is somewhat complicated, it represents the experimental data within an accuracy of ${\pm}15%$.EX>${\pm}15%$.

A study about design of main parts and injection molds for atomization of cosmetic spray using finite element method (수치해석을 이용한 코그메틱용 스프레이 미립화를 위한 부품설계 및 금형 설계에 과한 연구)

  • Seo, Hyoung-Jin;Son, Chang-Woo;Jang, Young-Ju;Yang, Woo;Seo, Tae-Il
    • Design & Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.25-29
    • /
    • 2015
  • This paper presented characterization of spray velocity and angle of spray nozzle systems for cosmetic products. Diameter and length of nozzle orifice were chosen as shape factors of the spray system. Spray orifice of the spray pattern is a factor influencing the quality of the product. Fluid analysis was conducted by using "Fluent" to obtain spray angle and velocity. RSM (Response Surface Method) was used to approximate the relationship between these 2 factors and spray characteristics. To evaluate the proposed method, experimental work with existing was conducted and good agreement between simulation and experimental results.

  • PDF

Thermal and Flow Characteristics of Fluid with Fuel Type and Equivalence Ratio in Flame Spray Process (연료 종류 및 당량비에 따른 Flame Spray 화염장의 열-유동 특성 연구)

  • Lee, Jae Bin;Kim, Dae Yun;Shin, Dong Hwan;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.202-208
    • /
    • 2013
  • The present study aims to investigate the flow characteristics with respect to fuel type and equivalence ratio in the flame spray coating process. The flame spray flow is characterized by much complex phenomena including combustion, turbulent flows, and combined heat transfer. The present study numerically simulated the flam spray process and examined the gas dynamics involving combustion, gas temperature and velocity distributions in flame spray process by using commercial computational fluid dynamics (CFD) code of FLUENT (ver. 13.0). In particular, we studied the effect of fuel type and equivalence ratio on thermal and flow characteristics which could substantially affect the coating performance. From the results, it was found that the gas temperature distributions were varied with different fuels because of reaction times were different according to the fuel type. The equivalence ratio also could change the spatial flame distribution and the characteristics of coated layer on the substrate.

Numerical Study on the Atomization Process of a Supersonic Gas-Metallic Liquid Atomizer (초음속기체-금속액체 분사기의 미립화 과정에 대한 수치해석)

  • Hwang, Won-Sub;Kim, Kui-Soon;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.593-602
    • /
    • 2016
  • Numerical simulations on the close-coupled supersonic gas atomizer for metallic powder production were performed in this study. A proper turbulence model was chosen and then VOF(Volume of Fluid) and DPM(Discrete Phase Model) methods were sequentially applied for the simulations of primary and secondary break-up processes of liquid metal. Diameters of parent droplets were calculated by analyzing Level-Set function contour from the VOF result. Finally, the distribution of particle diameter was obtained from the DPM result at exit of the computational domain.

Optimum Design of an Automotive A/C Duct using by CFD (CFD를 이용한 승용차 에어컨 덕트의 최적설계)

  • Kim, T.H.;Jeong, S.J.
    • Journal of ILASS-Korea
    • /
    • v.1 no.3
    • /
    • pp.37-50
    • /
    • 1996
  • Computational fluid dynamics was used to optimize an A/C duct. Three dimensional flow analysis in an automotive A/C duct was performed computationally using various turbulence models and compared numerical predictions such as outlet flow split, surface pressure distribution along the duct to experimental data. Additionally, we studied the effect of location variation of 2nd branch on exit flow ratio and could find optimal location of 2nd branch. The design of an A/C duct was modeled and calculated to enhance the airflow distribution in each outlet using the STAR-CD computational fluid dynamics software. In results, modified $k-\varepsilon$ turbulence model allows a successful prediction of static pressure distribution particulary at around strong curvature but little improvement flow split. In the future, adoption of CFD to design an A/C duct with modified $k-\varepsilon$ model will bring benefits of producing more accurate prediction, and also give designers more detail information much more than now.

  • PDF

Numerical Analysis of Effects of Water Mist Injection Characteristics on Cooling Performance in Heated Chamber (미분무수 분사 특성에 따른 가열 챔버 내 냉각 성능 수치 해석)

  • Sumon, S.M.;Lee, S.W.
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.64-70
    • /
    • 2012
  • Water mist fire suppression systems which use relatively small droplets of water with high injection pressure are increasingly being used in wider applications because of its greater efficiency, low flooding damage and low toxicity. However, the performance of the system significantly relies on the water mist characteristics and it requires better understanding of fire suppression mechanism of water mist. In the present study, computational fluid dynamics simulations were carried out to investigate cooling performance of water mist in heated chamber. The gas phase was prepared with natural convection heat transfer model for incompressible ideal case and then the effects of water mist injection characteristics on cooling capabilities were investigated upon the basis of the pre-determined temperature field. For the simulation of water mist behavior, Lagrangian discrete phase model was employed by using a commercial code, FLUENT. Smaller droplet sizes, greater injection angles and higher flow rates provided relatively higher cooling performance.

Experimental Study on the Spray Characteristics of Aerated Impinging Jets (기체주입 충돌제트의 분무특성에 관한 실험적 연구)

  • Lee, Keunseok;Yoon, Youngbin;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.185-193
    • /
    • 2019
  • The effervescent atomizer is one of twin-fluid atomizers that aeration gas enters into bulk liquid and two-phase flow is formed in the mixing section. The effervescent atomizer requires low injection pressure and small amount of aeration gas, as compared to other twin-fluid atomizers. In this study, cold flow test was conducted to investigate the spray characteristics of aerated impinging jets. The present effervescent impinging atomizers were composed of the aerator device and like-on-like doublet impinging atomizer which had different impinging angles. To analyze the spray characteristics such as breakup length and droplet size distribution, the image processing technique was adopted by using instantaneous images at each flow condition. Non-dimensional parameters, induced by the homogeneous flow model, were used to predict the breakup length. The breakup length was decreased with the mixture Reynolds number and impinging angle increasing. The result of droplets showed that the size distribution was axisymmetric about the center of the injector and their diameter tended to decrease with increasing GLR.

Experimental Study on Spray Characteristics of Twin Fluid Nozzle in Urea-SCR (Urea-SCR에 적용되는 이유체 노즐의 분무특성에 관한 실험적 연구)

  • Park, Hyung Sun;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.96-102
    • /
    • 2017
  • In order to reduce the NOx, SCR technology is most suitable. In this study, we focused on studying the injector part of urea-SCR system. When stoichiometric 1 mole of urea is injected, 2 moles of $NH_3$ are created. $NH_3$ causes a SCR reaction by reacting with NOx. However, urea is decomposed by the side reaction of coming out HNCO, deposit formation is formed. In this study, it was to design a nozzle that can spray the optimal spray flow rate. Test nozzle used in this experiment is efferverscent type. The result of the experiment, liquid flow rate was confirmed to be that they are dominated by the exit orifice diameter. The area ratio is defined by ratio of the area of exit orifice hole and that of aerorator. The droplet size was measured by varying the area ratios. In addition, it was also confirmed that there is no change of the liquid flow rate and air flow rate to change the aerorator at the same exit orifice. Further, It was confirmed that the droplet size was relatively uniform even though the area ratio was different. Finally, there is little change in the SMD that air flow rate increases in 0.3 or more ALR.

A Study on Spray Characteristics according to Design Parameters and Pressure Conditions of Industrial Y-jet Nozzle (산업용 Y-jet 노즐의 설계변수 및 압력 조건에 따른 분무특성에 관한 연구)

  • Lee, Sang Ji;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.137-144
    • /
    • 2019
  • The Y-jet nozzle has benefits such as simple design and wide operating conditions. Because of these benefits, it is used in various combustion devices including industrial boilers. The most important variables in the design of the Y-jet nozzle are the mixing chamber length, the supply diameter of the liquid fuel and gas, and the exit orifice diameter. In addition, because of the use of a twin-fluid, optimized data is required depending on the spray condition. In this study, spray experiment was carried out under the pressure condition of 7 bar or more, which is the spraying condition used in industry. There was no change in flow rate with the length of the Y-jet nozzle mixing chamber, but the difference in SMD was confirmed. Adjusting the exit orifice diameter is most important to achieve the desired flow rate. Changes in the liquid and gas inlet port diameters ratio were found to be help improve the operating range and significant difference in SMD was observed.

The Influence of Fuel Temperature on the Spray Characteristics (연료온도변화가 분무특성에 미치는 영향)

  • Park, Byung-Sung;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.173-178
    • /
    • 2003
  • An experimental study is conducted to investigate the effects of fuel temperature on the spray characteristics of a dual-orifice type swirl injector which is used in gas turbines. The major parameters affecting spray characteristics are fuel temperature and injection pressure entering into the injector. Fuel temperature is shown to have strong influence on the spray characteristics especially at a lower temperature. In this study, fuel temperature is varied from $30^{\circ}C$ to $120^{\circ}C$ and injection pressure is altered from 3 to $7 kg_{f}$ /$cm^{2}$. Two kinds of fuel, which have different surface tension and viscosity, are chosen as an atomizing fluid. As a result, injection instability occurs in the low temperature range due to icing phenomenon and the change of fuel properties. As the injection pressure increases, the kinematic viscosity range for stable atomization becomes wider. The factor controlling the SMD of spray is substantially different depending on the fuel temperature range.

  • PDF