• 제목/요약/키워드: Fluid

검색결과 19,892건 처리시간 0.045초

The influence of the fluid flow velocity and direction on the wave dispersion in the initially inhomogeneously stressed hollow cylinder containing this fluid

  • Surkay D. Akbarov;Jamila N. Imamaliyeva;Reyhan S. Akbarli
    • Coupled systems mechanics
    • /
    • 제13권3호
    • /
    • pp.247-275
    • /
    • 2024
  • The paper studies the influence of the fluid flow velocity and flow direction in the initial state on the dispersion of the axisymmetric waves propagating in the inhomogeneously pre-stressed hollow cylinder containing this fluid. The corresponding eigenvalue problem is formulated within the scope of the three-dimensional linearized theory of elastic waves in bodies with initial stresses, and with linearized Euler equations for the inviscid compressible fluid. The discrete-analytical solution method is employed, and analytical expressions of the sought values are derived from the solution to the corresponding field equations by employing the discrete-analytical method. The dispersion equation is obtained using these expressions and boundary and related compatibility conditions. Numerical results related to the action of the fluid flow velocity and flow direction on the influence of the inhomogeneous initial stresses on the dispersion curves in the zeroth and first modes are presented and discussed. As a result of the analyses of the numerical results, it is established how the fluid flow velocity and flow direction act on the magnitude of the influence of the initial inhomogeneous stresses on the wave propagation velocity in the cylinder containing the fluid.

Polypropylene fiber reinforced concrete plates under fluid impact. Part I: experiments

  • Korucu, Hasan
    • Structural Engineering and Mechanics
    • /
    • 제60권2호
    • /
    • pp.211-223
    • /
    • 2016
  • Static loading and fluid impact tests on plates containing mesh reinforcement and polypropylene fibers in ratios of 0 to 3% by volume were performed. The objective was to observe the effect of fluid mass on the total impulse that caused the impact event and the influence of fiber amount on the impact resistance, and to estimate the velocity of fluid that causes scabbing, perforation or total disintegration. The study is the first to express the fluid impact resistance of polypropylene fiber reinforced concrete plates.

자성유체의 표면제어에 관한 연구 (A Study on the Surface Control of a Magnetic Fluid)

  • 신진오;이은준;박명관
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.65-69
    • /
    • 2001
  • In this study, the deformation of the free surface motion of a magnetic fluid for the change in electromagnetic force is discussed. In case, magnetic fluid in characteristics of fluid adjusted to the opposite direction of the gravity direction. Thus, the device of a magnetic fluid proposed the complete zero-leakage Sealing and the surface actuator. The device of surface deformation as well comparison between numerical simulation and experiments as will be presented.

  • PDF

이색 사출성형기 개발을 위한 유압시스템의 특성 검토 (Characteristics Analysis of the Fluid Power System for a Double-color Injection Molding Machine Development)

  • 장주섭
    • 유공압시스템학회논문집
    • /
    • 제8권4호
    • /
    • pp.24-31
    • /
    • 2011
  • Double-color Injection molding machine is the assembly of many kinds of mechanical, fluid power part and electric electronic control system. From in these, fluid power is a part where becomes the first core of this machine. Fluid power systems of double-color injection molding machine are modelled and analyzed using a commercial program AMESim. Partial system models which is divided according to functional operation are made and its analysis results shows how design parameters work on operational characteristics like pressure, flow rates, displacement at each node and so on. Analysis modeling and compared the data which gets from experiment and the analysis result which has a reliability got data. The results made by analysis will be used design of fluid power circuit for developing a double-color injection molding machine.

Computational Study of the Magnetically Suspended Centrifugal Blood Pump (2nd Report: Pressure Fluctuation and Stability of Impeller Rotation for Different Volute Shapes)

  • Ogami, Yoshifumi;Matsuoka, Daisuke;Horie, Masaaki
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권4호
    • /
    • pp.375-386
    • /
    • 2011
  • The turbo-type blood pump studied in this paper has an impeller that is magnetically suspended in a double volute casing. The impeller rotates with minimal fluctuations caused by fluid and magnetic forces. In order to improve stability of the rotating impeller and to facilitate long-term use, a careful investigation of the pressure fluctuations and of the fluid force acting on the impeller is necessary. For this purpose, two models of the pump with different volute cross-sectional area are designed and studied with computational fluid dynamics software. The results show that the fluid force varies with the flow rate and shape of the volute, that the fluctuations of fluid force decrease with increasing flow rate and that the vibratory movement of the impeller is more efficiently suppressed in a narrow volute.

부분 탄성지지된 유체 저장 원통셸의 자유진동 (Free Vibrations of Fluid-filled Cylindrical Shells on Partial Elastic Foundations)

  • 정강;김영완
    • 한국소음진동공학회논문집
    • /
    • 제22권8호
    • /
    • pp.763-770
    • /
    • 2012
  • The free vibration characteristics of fluid-filled cylindrical shells on partial elastic foundations are investigated by an analytical method. The cylindrical shell is fully or partially surrounded by the elastic foundations, these are represented by the Winkler or Pasternak model. The motion of shell is represented by the first order shear deformation theory to account for rotary inertia and transverse shear strains. The steady flow of fluid is described by the classical potential flow theory. The fluid-structure interaction is considered in the analysis. The effect of internal fluid can be considered by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. To validate the present method, the numerical example is presented and compared with the available existing results.

전자기력에 의한 자성유체의 2차원 자유표면 형상 제어에 관한 연구 (A Study on the Two-dimensional Formation Control of Free Surface of Magnetic Fluid by Electromagnetic Force)

  • 배형섭;양택주;이육형;주동우;박명관
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.29-37
    • /
    • 2005
  • In this study, the control of the free surface deformation of a magnetic fluid for the change in electromagnetic force is discussed. The free surface of magnetic fluid is formed by the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. Magnetic fluid in characteristics of fluid adjusted to the opposite direction of the gravity direction. Thus, the device of a magnetic fluid proposed the complete zero-leakage sealing, oscillator for surface control, boundary layer control, MHD, flow control, flow using magnetic levitation system and surface actuator. This study show the deformation of surface rise due to the intensity of the magnetic field and possibility of two-dimensional control of magnetic fluid through the feedback data of hall sensor.