• Title/Summary/Keyword: Fluid/Structure Coupled Analysis

Search Result 182, Processing Time 0.023 seconds

Hydroelastic Analysis of Structural Vibration in Contact with Fluid (접수구조물 진동의 유력탄성해석)

  • K.T. Chung;Y.B. Kim;H.S. Kang;J.H. Roh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.135-142
    • /
    • 1992
  • In the vibration analysis or submerged of floating bodies such as ship and offshore structures, the coupled system between structure and fluid satisfying the compatibility conditions on the wetted surface should be considered. It is well known that the hydroelastic analysis of structural vibration in contact with fluid can be solved by applying the finite element method to structure and the boundary element method to fluid domain. However such an approach is impractical, because fluid added mass matrix is fully coupled on whole wetted surface. To overcome this shortcoming, an efficient approach based on reanalysis scheme is proposed in this paper. The proposed method can be applied for cases with higher modes lacking 3-D reduction factor J as well as beam-like modes of marine structures. It is well known the traditional method using 2-D added mass and J-factor is good only for beam-like modes with reliable J values. The validity and the calculation efficiency of the proposed method are proved with numerical examples.

  • PDF

Sloshing Analysis of a Simple Tank using Fluid-structure Interface Method (유체-구조 연성 방법에 의한 단순 탱크 슬로싱 해석)

  • Kang, Sung-Jong;Seo, Hong-Jae;Kim, Byung-Joo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.31-37
    • /
    • 2011
  • Fuel tank sloshing noise of vehicle is caused by flow impact on the tank wall during sudden braking, and the sloshing vibration of tank wall is a coupled phenomenon of the fuel inside tank and tank wall structure. Therefore, Fluid-Structure Interface(FSI) analysis technology should be adopted to predict accurately the sloshing vibration. In this study, FSI approach was employed to analyze sloshing phenomenon for a simple tank model with velocity change of the actual vehicle test. First, the simulated results for rigid tank model were compared with those for deformable tank model. Next, influence of baffle location and shape of baffle holes on the acceleration magnitude and the maximum stress of tank wall was investigated. In addition, sloshing analysis for tank with another baffle type was carried out.

Dynamic behavior of a functionally graded plate resting on Winkler elastic foundation and in contact with fluid

  • Shafiee, Ali A.;Daneshmand, Farhang;Askari, Ehsan;Mahzoon, Mojtaba
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.53-71
    • /
    • 2014
  • A semi-analytical method is developed to consider free vibrations of a functionally graded elastic plate resting on Winkler elastic foundation and in contact with a quiescent fluid. Material properties are assumed to be graded distribution along the thickness direction according to a power-law in terms of the volume fractions of the constituents. The fluid is considered to be incompressible and inviscid. In the analysis, the effect of an in-plane force in the plate due to the weight of the fluid is taken into account. By satisfying the compatibility conditions along the interface of fluid and plate, the fluid-structure interaction is taken into account and natural frequencies and mode shapes of the coupled system are acquired by employing energy methods. The results obtained from the present approach are verified by those from a finite element analysis. Besides, the effects of volume fractions of functionally graded materials, Winkler foundation stiffness and in-plane forces on the dynamic of plate are elucidated.

Transonic Flutter Analysis Using Euler Equation and Reduced order Modeling Technique (오일러 방정식 및 저차모델링 기법을 활용한 천음속 플러터 해석)

  • Kim, Dong-Hyun;Kim,, Yo-Han;Kim, Myung-Hwan;Ryu, Gyeong-Joong;Hwang, Mi-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.339-344
    • /
    • 2011
  • In the past much effort has been made to utilize advanced computational fluid dynamic (CFD) programs for aeroelastic simulations and analysis. However, it is limited in the field of unsteady aeroelasticity due to enormous size of computer memory and unreasonably long CPU time. Recently, AAEMS(Aerodynamics is Aeroelasticity minus Structure) was developed for linear time-invariant, coupled fluid-structure systems. In this paper, to demonstrate further the efficiency and accuracy of the new model reduction method, we successfully examine AGARD 445.6 wing modeled by FLUENT CFD, FSIPRO3D and NASTRAN FEM(Finite Element Method) programs. Using the ROM(Reduced Order Modeling) one can predict flutter boundary as a function of the dynamic pressure.

  • PDF

Thermal-Fluid Coupled Analysis for Injection Molding Process by Considering Thermal Contact Resistance (사출금형의 열접촉 저항을 고려한 성형과정의 열-유동 연계해석)

  • Sohn, Dong-Hwi;Kim, Kyung-Min;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1627-1633
    • /
    • 2011
  • Injection molds are generally fabricated by assembling a number of plates in which the core and cavity components are assembled. This assembled structure has a number of contact interfaces where the heat transfer characteristics are affected by thermal contact resistance. In previous studies, numerical approaches were investigated to predict the effect of thermal contact resistance on the temperature distribution of injection molds. In this study, thermal-fluid coupled numerical analyses are performed to take into account the thermal contact effect on the numerical evaluation of the mold filling characteristics. Comparisons with experimental results show that the proposed coupled analysis provides more reliable results than the conventional analyses in predicting the mold filling characteristics by taking into account the effect of thermal contact resistance inside the injection mold assembly.

Hydro-elastic analysis of marine propellers based on a BEM-FEM coupled FSI algorithm

  • Lee, Hyoungsuk;Song, Min-Churl;Suh, Jung-Chun;Chang, Bong-Jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.562-577
    • /
    • 2014
  • A reliable steady/transient hydro-elastic analysis is developed for flexible (composite) marine propeller blade design which deforms according to its environmental load (ship speed, revolution speed, wake distribution, etc.) Hydro-elastic analysis based on CFD and FEM has been widely used in the engineering field because of its accurate results however it takes large computation time to apply early propeller design stage. Therefore the analysis based on a boundary element method-Finite Element Method (BEM-FEM) Fluid-Structure Interaction (FSI) is introduced for computational efficiency and accuracy. The steady FSI analysis, and its application to reverse engineering, is designed for use regarding optimum geometry and ply stack design. A time domain two-way coupled transient FSI analysis is developed by considering the hydrodynamic damping ffects of added mass due to fluid around the propeller blade. The analysis makes possible to evaluate blade strength and also enable to do risk assessment by estimating the change in performance and the deformation depending on blade position in the ship's wake. To validate this hydro-elastic analysis methodology, published model test results of P5479 and P5475 are applied to verify the steady and the transient FSI analysis, respectively. As the results, the proposed steady and unsteady analysis methodology gives sufficient accuracy to apply flexible marine propeller design.

Thermo-Fluid-Structure Coupled Analysis of Air Foil Thrust Bearings using Shell Model (쉘 모델을 이용한 공기 포일 스러스트 베어링의 열-유체-구조 연동 해석)

  • Jong wan Yun;So yeon Moon;Sang-Shin Park
    • Tribology and Lubricants
    • /
    • v.40 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • This study analyzes the thermal effects on the performance of an air foil thrust bearing (AFTB) using COMSOL Multiphysics to approximate actual bearing behavior under real conditions. An AFTB is a sliding-thrust bearing that uses air as a lubricant to support the axial load. The AFTB consists of top and bump foils and supports the rotating disk through the hydrodynamic pressure generated by the wedge effect from the inclined surface of the top foil and the elastic deformation of the bump foils, similar to a spring. The use of air as a lubricant has some advantages such as low friction loss and less heat generation, enabling air bearings to be widely used in high-speed rotating systems. However, even in AFTB, the effects of energy loss due to viscosity at high speeds, interface frictional heat, and thermal deformation of the foil caused by temperature increase cannot be ignored. Foil deformation derived from the thermal effect influences the minimum decay in film thickness and enhances the film pressure. For these reasons, performance analyses of isothermal AFTBs have shown few discrepancies with real bearing behavior. To account for this phenomenon, a thermal-fluid-structure analysis is conducted to describe the combined mechanics. Results show that the load capacity under the thermal effect is slightly higher than that obtained from isothermal analysis. In addition, the push and pull effects on the top foil and bump foil-free edges can be simulated. The differences between the isothermal and thermal behaviors are discussed.

Performance Evaluation of Cascade Considering Fluid/Structure Coupling Deformation (유체/구조 연계 변형효과를 고려한 케스케이드의 성능평가)

  • Oh, Se-Won;Kim, Dong-Hyun;Kim, Yu-Sung;Park, Oung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.275-282
    • /
    • 2007
  • In this study, a fluid-structure interaction (FSI) analysis system has been developed in order to evaluate the turbine cascade performance with blade structural deformation effect. Relative movement of the rotor with respect to stator is reflected by modeling independent two computational domains. To consider the deformed position of rotor airfoil, dynamic moving grid method is applied. Reynolds-averaged Navier-Stokes equations with one equation Spalart-Allmaras and two-equation SST $k-{\varepsilon}$ turbulence models are solved to predict unsteady fluid dynamic loads. A fully implicit time marching scheme based on the Newmark direct integration method with high artificial damping is used to compute the fluid-structure interaction problem. Cascade performance evaluations for different elastic axis positions are presented and compared each other. It is importantly shown that the predicted aerodynamic performance considering structural deformation effect of blade can show some deviations compared to the data generally computed from rigid blade configurations and the position of elastic axis also tend to give sensitive effect.

  • PDF

The Analysis of Transmission Characteristics of Closed Structure with Internal Source Using FEM/BEM (유한.경계요소법을 이용한 내부음원을 갖는 닫힌 구조물의 차음 특성 해석)

  • Won, Sung-Gyu;Jung, Weui-Bong;Seo, Yeung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.318-321
    • /
    • 2005
  • In vibro-acoustic analysis, the commercial CAE tools, such as SYSNOISE, is usually used to take into account of the coupled effects of fluid acoustics and structural vibration. The acoustic field can be solved by either FEM or BEM, while the vibration field is usually solved by FEM. The interior or exterior acoustic problems with the coupled effects of the structural boundary could be solved by the commercial tools. The commercial tools, however, could not solve the problems in case that both the interior and exterior acoustic field is coupled with the structural boundary. In this paper, a realistic method based on FEM/BEM coupling scheme is presented to analyze the acoustic radiation from the internal source in a chamber to external acoustic field through elastic structural boundary. Several numerical examples are implemented to validate the developed program.

  • PDF

Free Vibration Analysis of Perforated Plate Submerged in Fluid

  • Jhung, Myung-Jo;Jo, Jong-Chull;Jeong, Kyeong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1323-1338
    • /
    • 2006
  • An analytical method to estimate the coupled frequencies of the circular plate submerged in fluid is developed using the finite Fourier-Bessel series expansion and Rayleigh-Ritz method. To verify the validity of the analytical method developed, finite element method is used and the frequency comparisons between them are found to be in good agreement. For the perforated plate submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the plate and the fluid at the same time. This necessitates the use of solid plate with equivalent material properties. Unfortunately the effective elastic constants suggested by the ASME code are found to be not valid for the modal analysis. Therefore in this study the equivalent material properties of perforated plate are suggested by performing several finite element analyses with respect to the ligament efficiencies.