• Title/Summary/Keyword: Flue gas temperature

Search Result 230, Processing Time 0.024 seconds

Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part I. Combustion Characteristics of Low NOx (대향류 화염에서 FGR이 적용된 저공해 연소의 수치적 해석: Part I. 저 NOx 연소특성)

  • Cho, Seo-Hee;Lee, Kee-Man
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.8-16
    • /
    • 2019
  • One of the methods for low-pollution combustion, flue gas recirculation(FGR) is effective to reduce nitrogen oxides and it was applied in CH4/air premixed counterflow flames to identify the change of flame characteristics and NOx mechanisms. Considering that the mole fraction of the products varied depending on the strain rates, the major products: CO2, H2O, O2 and N2 were recirculated as a diluent to reflect the actual combustion system. With the application of the FGR technique, a turning point of maximum flame temperature under certain strain rate condition was found. Furthermore as the recirculation ratio increased, the tendency of NO was changed before and after the turning point and the analysis on thermal NO and Fenimore NO production was conducted.

Experimental Study on Thermal Characteristics of Heat Exchanger Modules for Multi Burner Boiler (자트로파 유(Crude Jatropha Oil)에 대한 보일러 직접 연소 특성)

  • Kang, Sae-Byul;Kim, Jong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2934-2939
    • /
    • 2008
  • We conducted a test of a direct burning of crude Jatropha oil (CJO) in a commercial boiler system. The fuel, crude Jatropha oil is not biodiesel which comes from transeterification process of bio oil, but it is pure plant oil. The higher heating value (HHV) of the CJO is 39.3 MJ/kg (9,380 kcal/kg) and is higher than that of a commercial heating oil, 37.9 MJ/kg. The kinematic viscosity of CJO is 36.2 mm2/s at $40^{\circ}C$ and 8.0 mm2/s at $100^{\circ}C$. The burner used in the test is a commercial burner for a commercial heatingoil and its capacity is 140 kW (120,000 kcal/h). We did a preliminary test whether the combustion is stable or not. The preliminary test was a kind of open air combustion test using the commercial burner with crude Jatropha oil. We found that the combustion can be stable if the crude Jatrophaoil temperature is higher than $90^{\circ}C$. We measured the flue gas concentration by using a gas analyzer. The NOx concentration is $80{\sim}100\;ppm$ and CO concentration is nearly 0 ppm at flue gas O2 concentration of 3.0 and 4.5%.

  • PDF

Mixer design for improving the injection uniformity of the reduction agent in SCR system

  • Hwang, Woohyeon;Lee, Kyungok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • In this paper, we propose a method to optimize the geometry and installation position of the mixer in the selective catalytic reduction (SCR) system by computational fluid dynamic(CFD). Using the commercial CFD software of CFD-ACE+, the flow dynamics of the flue gas was numerically analyzed for improving the injection uniformity of the reduction agent. Numerical analysis of the mixed gas heat flow into the upstream side of the primary SCR catalyst layer was performed when the denitrification facility was operated. The characteristics such as the flow rate, temperature, pressure loss and ammonia concentration of the mixed gas consisting of the flue gas and the ammonia reducing gas were examined at the upstream of the catalyst layer of SCR. The temperature difference on the surface of the catalyst layer is very small compared to the flow rate of the exhaust gas, and the temperature difference caused by the reducing gas hardly occurs because the flow rate of the reducing gas is very small. When the mixed gas is introduced into the SCR reactor, there is a slight tendency toward one wall. When the gas passes through the catalyst layer having a large pressure loss, the flow angle of the exhaust gas changes because the direction of the exhaust gas changes toward a smaller flow. Based on the uniformity of the flow rate of the mixed gas calculated at the SCR, it is judged that the position of the test port reflected in the design is proper.

A Study on the Thermal Decomposition of Carbon Tetrachloride by Pyrolytic Incineration (사염화탄소의 열분해 소각에 관한 연구)

  • 이태호;정홍기
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.1
    • /
    • pp.57-61
    • /
    • 1996
  • This study was to decompose carbon tetrachloride and CFC with pyrolytic incineration unit because of prohibition of their usage sooner or later. We have investigated heating value and temperature versus decomposing rate, removal of $Cl_2$ and dust in the flue gas, The results obtained were as follows; 1. In combustion condition to decompose $CCl_4$ heating value was 3,300Kcal/Kg, retention time was 2,0 sec. incinerator exit temperature was $950^{\circ}C$. 2.The removal of HCI and $Cl_2$ in flue gas used NaOH as reagent, then molar ratio o of $Na^+/Cl^-$ was 1.07. 3. NaCI of dust component was more than 90 %, 2 stage venturi scrubber was used to remove dust, then removal rate of dust was 99% over at L/G of $1.7Vm^3$

  • PDF

A Study of Fly Ash Resistivity Characteristics Generated from the Coal Fired Power Plant as a Function of Water Concentration and Temperature (석탄 화력발전소에서 발생되는 석탄회의 수분함유량 및 온도에 따른 비저항성 특성 연구)

  • Ku, Jae-Hyun;Lee, Jung-Eun;Lee, Jae-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.526-532
    • /
    • 2000
  • Recent studies have been directed toward obtaining a better understanding of the application of electrostatic precipitators to collect fly ash particles produced in a coal-fired power plant. Electrical resistivity can be described as the resistance of the collected dust layer to the flow of electrical current and is an important property for the collection efficiency in the electrostatic precipitator. In this paper, fly ash resistivity as a function of temperature up to $450^{\circ}C$ has been experimentally investigated using the resistivity meter consisted of the movable electrode, dust cup, and furnace. Resistivity was found to increase with increased temperature up to $200^{\circ}C$ due to the reduction of water concentration and then gradually decrease with increased temperature due to the activation of electrons. As the resistivity of fly ash in the flue gas temperature of $150^{\circ}C$ was measured >$10^{10}$ ohm cm, the efficiency of fly ash removal in the electrostatic precipitator might be expected to be low due to back-corona phenomenon. Flue gas conditioning in the electrostatic precipitator to reduce the resistivity of fly ash as required.

A Study on the Reduction of $NO_x$ Emission from Dual Fuel Engine for Co-generation System (열병합발적용 Dual Fuel Engine의 질소산화물 배출저감에 관한 연구)

  • 정일래;김용술;심용식
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.31-40
    • /
    • 1991
  • This study shows the correlation between $NO_x$ emission in the exhaust gas and various operation factors of dual fuel engine for Co-generation system. General tendency was shown that the thermal efficiency was lowered by the change of operation factors. However these were not confirmed on this experiment. Increasing T4 temperature (exhaust gas temperature at turbo-charger inlet) reduces $NO_x$ emission rate. The higher T4 temperature requires lower excess air as the excess air ratio is controlled by T4 temperature on gas mode operation. Another tendency was that $NO_x$ emission rate is reduced in case of increasing boost air temperature, quantity of pilot oil or bypassing flue gas through the exhaust gas boiler. The diameter of the fuel injection nozzle was changed smaller than design value and the injection timing was readjusted. Thus $NO_x$ emission rate could be reduced as retarding injection timing and changing hole diameter of fuel injection nozzle, however maxium engine out-put was decreased by changing fuel nozzle on the diesel mode operation.

  • PDF

Heat Integration and Economic Analysis of Dry Flue Gas Recirculation in a 500 MWe Oxy-coal Circulating Fluidized-bed (CFB) Power Plant with Ultra-supercritical Steam Cycle (순환 유동층 보일러와 초초임계 증기 사이클을 이용한 500 MWe급 순산소 화력발전소의 건식 재순환 흐름의 열 교환 및 경제성 분석)

  • Kim, Semie;Lim, Young-Il
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.60-67
    • /
    • 2021
  • This study presented techno-economic analysis of a 500 MWe oxy-coal power plant with CO2 capture. The power plant included a circulating fluidized-bed (CFB), ultra-supercritical steam turbine, flue gas conditioning (FGC), air separation unit (ASU), and CO2 processing unit (CPU). The dry flue gas recirculation (FGR) was used to control the combustion temperature of CFB. One FGR heat exchanger, one heat exchanger for N2 stream exiting ASU, and a heat recovery from CPU compressor were considered to enhance heat efficiency. The decrease in the temperature difference (ΔT) of the FGR heat exchanger that means the increase in heat recovery from flue gas enhanced the electricity and exergy efficiencies. The annual cost including the FGR heat exchanger and FGC cooling water was minimized at ΔT = 10 ℃, where the electricity efficiency, total capital cost, total production cost, and return on investment were 39%, 1371 M$, 90 M$, and 7%/y, respectively.

CFD STUDY ON THE COMBUSTION CHAMBER OF AN OXY-FUEL FGR BOILER FOR $CO_2$ CAPTURING (순산소 재순환 연소를 채택한 $CO_2$ 회수형 보일러 연소실에 대한 수치해석)

  • Ahn, J.;Kim, H.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.329-334
    • /
    • 2009
  • An oxy-fuel boiler has been developed to capture $CO_2$ from the exhaust gas. FGR (flue gas recirculation) is adopted to be compliant with the retrofit scenario. Numerical simulations have been performed to study the detailed physics inside the combustion chamber of the boiler. The temperature field obtained from the simulation agrees with the flame image from the experiment. The FGR combustion yields similar heat transfer characteristics with the conventional air combustion while the flame is formed further downstream in case of the FGR combustion.

  • PDF

The Operational Characteristics of CO2 5 ton/day Absorptive Separation Pilot Plant (이산화탄소 5 ton/day 흡수분리 Pilot Plant 운전 특성)

  • O, Min-Gyu;Park, So-Jin;Han, Keun-Hee;Lee, Jong-Seop;Min, Byoung-Moo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.128-134
    • /
    • 2012
  • The pilot scale experiments can handle the flue gas up to 1,000 $Nm^3/hr$ for separation of carbon dioxide included in real flue gas at coal-fired power plant. The operational characteristics was analyzed with the main experimental variables such as flue gas flow rate, absorbent circulation rate using chemical absorbents mono-ethanolamine( MEA) and 2-amino-2-methyl-1-propanol(AMP). The more flue gas flow rate decreased in 100 $m^3/hr$ in the MEA 20 wt% experiments, the more carbon dioxide removal efficiency was increased 6.7% on average. Carbon dioxide removal efficiency was increased approximately 2.8% according to raise of the 1,000 kg/hr absorbent circulation rate. It also was more than 90% at $110^{\circ}C$ of re-boiler temperature. Carbon dioxide removal efficiency of the MEA was higher than that of the AMP. In the MEA(20 wt%) experiment, carbon dioxide removal efficiency(85.5%) was 10% higher than result(75.5%) of ASPEN plus simulation.