• Title/Summary/Keyword: Flue gas desulfurization process

Search Result 33, Processing Time 0.034 seconds

Performance improvement of wave plate mist eliminator through geometry modification (Wave plate 습분제거기의 형상 변경을 통한 성능 개선)

  • Jung-Hun, Noh;Min-Cheol, Cho;Seung-Jong, Lee
    • Particle and aerosol research
    • /
    • v.18 no.4
    • /
    • pp.97-107
    • /
    • 2022
  • The geometry of popular wave plate type mist eliminator for the wet flue gas desulfurization process was improved, fabricated, and experimentally evaluated. A Mist eliminator is a type of inertial particle collector which collection efficiency is proportional to the velocity of the gas phase. However, as the amount of re-entrainment is also proportional to the gas phase velocity, there is a limitation for the gas phase flow rate. Re-entrainment is one of the most important issues in a mist eliminator and is likely to occur as the input of the liquid phase and flow rate of the gas phase increase. In order to resolve this problem, the projection angle of the improved mist eliminator is set to 30° from the conventional one while maintaining the cross-section. With low flow rate conditions, the modified mist eliminator showed a similar pressure drop and overall collection efficiency. However, with conditions in which re-entrainment is obviously occurring, the modified mist eliminator showed better performance in draining droplets than the conventional one. As a result, the modified mist eliminator showed higher overall collection efficiency.

Evaluation of the Organic Linings at Gas Desulfurization System (탈황 설비용 유기 라이너의 평가)

  • Song, Yo-Seung;Kwan, Hyun-Ok;Jho, Nam-In
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1178-1182
    • /
    • 2012
  • The organic linings at flue gas desulfurization systems (FGD system) in power plant have the excellent chemical properties but, lose the anticorrosive properties according to the aging with environment conditions. The properties of the organic linings depend on the manufacturing company. Therefore, the basic properties of organic linings for the preestimate of life time should be examined by conducting the aging and the bond strength test according to temperature. The pre-aging samples were compared with the post-aging samples. The temperature conditions of the aging process were 70, 150 and $200^{\circ}C$. The bond strength was calculated and the cross sections of fracture surface were examined by optical microscope and SEM. The $T_g$ was examined by DSC, DTA and TGA.

Removal Characteristics of $SO_2$ in the Coal Combustion Flue Gas Treatment Convergence System (석탄화력발전소 현장의 석탄연소 배가스 고도처리용 건식 분류층 반응 실증장치에서의 $SO_2$ 제거성능 특성)

  • Jeon, Seong-Min;Park, Hyung-Sang;Park, Young-Ok
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.239-246
    • /
    • 2013
  • The purpose of this study is to determine the feasibility of dry-type desulfurization process for actual application to coal-fired power plant. We used actual exhaust gas from Facility Y, Plant #2 to fabricate a demo-scale testing device to attempt to improve the efficiency of desulfurization. A spout-bed circulating dry scrubber convergence system connecting turbo reactor with bag filter was devised, then analyzed for performance characteristics of $SO_2$ removal for Ca/S mole ratio, superficial gas velocity, and ammonia injection, and for secondary reaction characteristics of the non-reactive sorbent at the bag filter. As a result, the installation of spout-bed circulating dry scrubber convergence system showed better economy and efficiency for removing sulfur than the existing wet/semidry-type desulfurization process. In addition, the best efficiency for desulfurization occurred when connected to the bag filter, with differential pressure maintained at 150 $mmH_2O$.

Modeling of Wet Flue Gas Desulfurization Process for Utilization of Low-Grade Limestone (저품위 석회석 활용을 위한 습식 배연탈황 공정 모델링 연구)

  • Lim, Jonghun;Choi, Yeongryeol;Kim, Geonyeol;Song, Hojun;Kim, Junghwan
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.743-748
    • /
    • 2019
  • This study focuses on the simulation of wet flue gas desulfurization process for improving the production of gypsum by the utilization of low-grade limestone. At present, high-grade limestone with a $CaCO_3$ content of 94% is used for producing merchantable gypsum. In modeling process, a lot of reactions are considered to develop model. First, the limestone dissolution is simulated by RSTOIC model. Second, SOx absorption and crystallization is used by RCSTR model. Finally the gypsum is separated by using SEPERATORS model. Modeling steps make it easy to reflect further side reactions and physical disturbances. In optimization condition, constraints are set to 93% purity of gypsum, 94% desulfurization efficiency, and total use of limestone at 3710 kg/hr. Under these constraints, the mass flow of low-grade limestone was maximized. As a result, the maximum blending quantity of low-grade limestone for 2,100 kg of high-grade limestone that satisfies constraints is about 1,610 kg.

Influence of Physicochemical Characteristic of Donghae-Samcheok Limestones on the Performance of Flue Gas Desulfurization (FGD) (동해-삼척지역 석회석의 물리화학적 특성이 탈황성능에 미치는 영향)

  • Seo, Jun-Hyung;Baek, Chul-Seoung;Kwon, Woo-Tech;Cho, Kye-Hong;Ahn, Ji-Whan
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.38-44
    • /
    • 2015
  • It studies that effect of limestone of physicochemical characteristic on the performance of flue gas desulfurization (FGD) and application examination for technology of wet type FGD process and to utilize the limestone in Donghae-Samcheok. The experiment method was measured total neutralizing capability (TNC) using the lab scale experimental apparatus based on the HCl titration test. The results of TNC of limestone samples were more dependent on the physical characteristics including particle size rather than chemical compositions such as CaO content and particle size of limestone get smaller, TNC is increased.

A Study on the Desulfurization Efficiency of Limestone Sludge with Various Admixtures

  • Seo, Sung Kwan;Chu, Yong Sik;Shim, Kwang Bo;Lee, Jong Kyu;Song, Hun
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.479-482
    • /
    • 2015
  • The flue gas desulfurization (FGD) process is one of the most effective methods to reduce the amount of $SO_2$ gas (up to 90%) generated by the use of fossil fuel. Limestone is usually used as a desulfurizing agent in the wet-type FGD process; however, the limestone reserves of domestic mines have become exhausted. In this study, limestone sludge produced from the steel works process is used as a desulfurizing agent. Seven different types of additives are also used to improve the efficiency of the desulfurization process. As a result, alkaline additive is identified as the least effective additive, while certain types of organic acids show higher efficiency. It is also observed that the amount of FGD gypsum, which is a by-product of the FGD process, increases with the used of some of those additives.

Design and Operation of 3MW Pilot Plant of $Mg(OH)_2$ Flue Gas Desulfurization Process

  • Kim, In-Won;Jin, Sang-Hwa;Choi, Byung-Moon;Lee, Hyung-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.116.2-116
    • /
    • 2001
  • Korea Institute of Energy Research(KIER) has designed the 3MW pilot scale wet FGD process based on the experimental results of the bench scale FGD system which can treat 150 m3/hr of flue gases. The effects of process chemistry, packing material, and operating variables including L/G ratio, pH, scrubber pressure drop were investigated. In cooperation with Kyunggi Chemicals, the 3MW pilot scale plant was established on the industrial site at Onsan, Korea. This system has been operating since October 1999. This paper introduces an outline of the design features of the pilot plant and discusses its operational results.

  • PDF

A study on the Effects of Crystal Structure of Domestic High-Ca Limestones on the Grinding and Dissolution Rates in the Simulated Spray Type Absorption Tower (스프레이 모사 흡수탑에서 국내 고품위 석회석의 결정구조가 분쇄 및 용해도에 미치는 영향 연구)

  • Seo, Jun-Hyung;Baek, Chul-Seoung;Cho, Jin-Sang;Ahn, Ji-Whan;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.10-19
    • /
    • 2017
  • It is studied the effect of crystal structure of domestic High-Ca limestones using absorbent for desulfurization on the grinding characteristics and dissolution rates in wet flue gas desulfurization process of domestic coal fired power plant. It compared the crystal structure, grinding work index and dissolution rates with 4 Limestones from Jecheon-Danyang with different crystal structure, and we found that grinding work index differ in crystal size and crystal structure of limestones : The lower the value of the grinding work index is, the higher the dissolution rates of limestones. Confirmed that we have important indicators of grinding characteristics for crystal structure with CaO content of limestones.

Improvement of the $SO_{x}$ Removal by Adding Dibasic Acids into the JBR FGD Process

  • Lee, Byeong-Kyu;Jeon, Sang-Ki;Cho, Seong-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E4
    • /
    • pp.157-162
    • /
    • 2001
  • Jet Bubbling Reactors(JBRs) were operated for the removal of SO$_{x}$ in flue gases produced from many electric power plants. However, many JBR flue gas desulfurization (FGD) facility faced a decrease of SO$_{x}$ removal efficiency and an increase of scale problems with continuous operations. We increased alkalinity of the SO$_{2}$ absorbing medium by adding the dibasic acids (DBAs) to solve these problems more effectively. The SO$_{2}$ removal efficiency, the purity of CaCO$_{3}$ and COD of the wastewater was measured to identify the addition effects of DBAs (150, 200, 250, and 400 ppm) for 2hr in a day into the JBR attached to the large-scale power plants (400 MW$\times$3). Addition of the DBAs resulted in the improvement of the SO$_{2}$ removal efficiency from 2 to 5% and the purity of the gypsum from 1 to 2%; these improvement were due to the alkalinity increase of the absorbing medium and the reduction of a proportion of un-reacted CaCO$_{3}$, respectively. Also, the scale problems formed by un-reacted CaCO$_{3}$ inside the reaction zone of the JBR were substantially reduced. Even though the effluent COD of the wastewater slightly increased from 10~15 to 18~36 mg/l and the erosion problems in the injection pump and duct occurred, this method of increasing SO$_{2}$ removal efficiency by adding the DBAs could be considered as a profitable approach.ach.

  • PDF

Use of Flue Gas Desulfurization Gypsum as an Activator for a Ground Granulated Blast Furnace Slag (고로슬래그 자극재로써 건식 및 습식 배연탈황석고의 활용가능성 평가)

  • Lee, Hyun-Suk;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.4
    • /
    • pp.313-320
    • /
    • 2017
  • Flue gas desulfurization gypsum(FDG) is produced when removing sulfur oxides from combustion gas generated by coal power plant. However, the recycling of FDG is still limited to the certain purposes. In order to expand the possible application of FDG, this study aims to utilize FDG as an activator for ground granulated blast furnace slag. FDG produced by dry- and wet-process were used for the experiments. Slag paste specimens were produced by mixing with deionized water and simulated pore solution, and the role of FDG as an activator for blast furnace slag was evaluated using hydration study by XRD analysis and compressive strength development. According to the results, dry-type FDG was found to work as an activator for blast furnace slag without the presence of soluble alkalis. However, wet-type FDG needs assistance by soluble alkalis in order to work as an activator for blast furnace slag. It was also found that the substitution of dry- and wet-type FDG into blast furnace slag can increase the 28 day compressive strength of slag paste. It is expected that efficient and economical recycling of FDG will be possible if quantitative analysis of strength enhancement according to substitution rate of both dry- and wet-type FDG.