• 제목/요약/키워드: Flows Control

검색결과 680건 처리시간 0.026초

Conformation of single polymer molecule in a slot coating flow

  • Lee, Jeong-Yong;Ryu, Bo-Kyung;Lee, Joo-Sung;Jung, Hyun-Wook;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • 제20권2호
    • /
    • pp.89-94
    • /
    • 2008
  • To satisfy good mechanical and optical properties of polymer-coated film products, it will be indispensable to elucidate the molecular orientation of polymer chains within coating liquids in coating flows. Using hybridized numerical method between computational fluid dynamics (CFD) and Brownian dynamics (BD) simulations can provide the useful information for the better quality control of coated films. Flexible polymer chains, e.g., ${\lambda}$-DNA molecules here, change their conformation according to the flow strength and the flow type. The molecular conformation within the coated film on the web or substrate is quite different, because the polymer chains experience the complicated flow strength and flow types in flow field. Especially in the slot coating flow, these chains are more extended by the extension-like flow field generated in the free surface curvature just beyond the downstream die region. Also, the polymer chain extension beneath the free surface can be affected by the die geometry, e.g., the coating gap, changing flow field.

미소열교환기법에 의한 밀집형 열교환기의 성능 계산 : 핀을 통한 튜브간 전도의 영향 (Computation of Compact Heat Exchanger Performance by the Heat Exchangelet Method : Effect of Tube-to-tube Conduction along the Fin)

  • 성시경;송태호;최영철
    • 설비공학논문집
    • /
    • 제12권5호
    • /
    • pp.494-501
    • /
    • 2000
  • Effectiveness of a 3-pass plate finned-tube heat exchanger is calculated using heat exchangelet method by changing the shape of fin and the arrangement of tubes. The alternative refrigerant R134a is taken in this study. Conduction between neighboring tubes along the fin is taken into account in addition to convection between the fin and the surrounding air. Governing equations are obtained by using energy balance in a small control volume containing a tube and fins. They are numerically solved following the tube. Effect of tube-to-tube conduction is investigated in single-phase and two-phase flows with various fin shapes and arrangements of tubes. Improvement of effectiveness by fin perforation is studied too. The results shows that perforating fins, increasing the number of tubes, and increasing the distance between neighboring tubes at the same fin area enhance the effectiveness.

  • PDF

Resource Allocation Scheme for Millimeter Wave-Based WPANs Using Directional Antennas

  • Kim, Meejoung;Kim, Yongsun;Lee, Wooyong
    • ETRI Journal
    • /
    • 제36권3호
    • /
    • pp.385-395
    • /
    • 2014
  • In this paper, we consider a resource allocation scheme for millimeter wave-based wireless personal area networks using directional antennas. This scheme involves scheduling the reservation period of medium access control for IEEE 802.15.3c. Objective functions are considered to minimize the average delay and maximize throughput; and two scheduling algorithms-namely, MInMax concurrent transmission and MAxMin concurrent transmission-are proposed to provide a suboptimal solution to each objective function. These are based on an exclusive region and two decision rules that determine the length of reservation times and the transmission order of groups. Each group consists of flows that are concurrently transmittable via spatial reuse. The algorithms appropriately apply two decision rules according to their objectives. A real video trace is used for the numerical results, which show that the proposed algorithms satisfy their objectives. They outperform other schemes on a range of measures, showing the effect of using a directional antenna. The proposed scheme efficiently supports variable bit rate traffic during the reservation period, reducing resource waste.

마이크로 채널 내 사다리꼴 전극의 제타 포텐셜 변화에 따른 혼합효과 증대에 대한 수치해석적 연구 (EFFECT OF THE ZETA POTENTIAL CONTROL BY THE TRAPEZOIDAL ELECTRODES IN A MICROCHANNEL ON ENHANCEMENT MIXING-PERFORMANCE)

  • 서용권;허형석;강금분
    • 한국전산유체공학회지
    • /
    • 제11권3호
    • /
    • pp.46-51
    • /
    • 2006
  • This paper presents the numerical results of fluid flow and mixing in a microfluidic device for electro-osmotic flow (EOF) with an trapezoidal electrode array on the bottom wall (ETZEA). Differently from previous EOF in a channel which only transports fluid in colloidal system. ETZEA can also be utilized to mix a target liquid with a reagent. In this study we propose a method of controlling fluid flow and mixing enhancement. To obtain the flow and mixing characteristics, numerical computations are performed by using a commercial code, CFX-10, and a self-made code LBM-D. It was found that the flow near the trapezoidal electrode in the ETZEA is of 3-D complex flows due to the zeta potential difference between the trapezoidal electrode and channel walls, and as a consequence the hetrogeneous zeta potential on the electrodes plays an important role in mixing the liquid.

유한요소법에 의한 2차원 하천 흐름 모형의 개발 (Two-Dimensional River Flow Analysis Modeling By Finite Element Method)

  • 한건연;김상호;김병현;최승용
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.425-429
    • /
    • 2006
  • The understanding and prediction of the behavior of flow in open channels are important to the solution of a wide variety of practical flow problems in water resources engineering. Recently, frequent drought has increased the necessity of an effective water resources control and management of river flows for reserving instream flow. The objective of this study is to develop an efficient and accurate finite element model based on Streamline Upwind/Petrov-Galerkin(SU/PG) scheme for analyzing and predicting two dimensional flow features in complex natural rivers. Several tests were performed in developed all elements(4-Node, 6-Node, 8-Node elements) for the purpose of validation and verification of the developed model. The U-shaped channel of flow and natural river of flow were performed for tests. The results were compared with these of laboratory experiments and RMA-2 model. Such results showed that solutions of high order elements were better accurate and improved than those of linear elements. Also, the suggested model displayed reasonable velocity distribution compare to RMA-2 model in meandering domain for application of natural river flow. Accordingly, the developed finite element model is feasible and produces reliable results for simulation of two dimensional natural river flow. Also, One contribution of this study is to present that results can lead to significant gain in analyzing the accurate flow behavior associated with hydraulic structure such as weir and water intake station and flow of chute and pool.

  • PDF

홍수 예경보를 위한 하천유출의 수문학적 예측 (A Hydrologic Prediction of Streamflows for Flood forecasting and Warning System)

  • 서병하;강관원
    • 물과 미래
    • /
    • 제18권2호
    • /
    • pp.153-161
    • /
    • 1985
  • 본 연구는 치수면에서 중요한 홍수 예경보 시스템을 좀 더 효율적으로 운영하고 그 시스템을 자동화하기 위한 하천 유출의수문학적인 예측방법의 개발에 관한 것으로 제어공학에서 상태공간개념으로부터 유도된 Kalman Filter 이론의 알고리즘을 파악하여 강우-유출계의 동적거동을 나타낼 수 있도록 예측 모형을 구성하고 Kalman Filter 의 적용 알고리즘을 도임하므로서 홍수시 하천유출의 on-line, 실시간 예측의 가능성을 제시하였다. 본 연구의 결과로 얻어진 전자계산 프로그램은 실제 하천유역의 실측자료로서 수정 보완하므로서 홍수 예경보 시스템의 자동화는 물로 그 시스템의 효율적인 운영방법 개선에 기여할 수 있을 것이다.

  • PDF

2차원 유한요소해석을 위한 마름/젖음 알고리듬의 민감도 분석 (Sensitivity Analysis of Dry/Wet Algorithm for 2-Dimensional Finite Element Analysis)

  • 한건연;김상호;최승용;황재홍
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.827-831
    • /
    • 2009
  • Recently, frequency occurring flood and drought has increased the necessity of an effective water resources control and management of river flows. Therefore, the simulation of the flow distribution in natural rivers is great importance to the solution of a wide variety of practical flow problems in water resources engineering. However The serious problem facing two-dimensional hydraulic model is the treatment of wet and dry areas. The objective of this study is to investigate the wet and dry parameters that have direct relevance to model performance in situations where inundation of initially dry areas occurs. Several numerical simulations were carried out, which examined the performance of the marsh porosity method for the purpose of sensitivity analysis. Experimental channel and a variety of channel were performed for model tests. The results were compared with those of the observation data and simulation data of existing model. The RMA-2 model displayed reasonable flow distribution compare to the observation data and simulation data of existing model in dry area for application of natural river flow. As a result of this study, effectively applied marsh porosity method provide a reliable results for flow distribution of wet and dry area, it could be further developed to basis for extending to water quality and sediment transport analysis.

  • PDF

비정렬 격자 직접모사법을 이용한 희박 유동과 측면 제트의 상호 작용에 관한 연구 (DSMC Calculation of the Hypersonic Free Stream and the Side Jet Flow Using Unstructured Meshes)

  • 김민규;권오준;안창수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.126-131
    • /
    • 2004
  • The interaction between the hypersonic free stream and the side jet flow at high altitudes is investigated by direct simulation Monte Carlo(DSMC) method. Since there is a great difference in density between the free stream and the side jet flow, the weighting factor technique which could control the number of simulation particles, is applied to calculate these two flows simultaneously. Chemical reactions are not considered in the calculation. For validation, the corner flow passing between a pair of plates that are perpendicularly attached is solved. The side jet flow is then injected into this comer flow and solution is found for the merged flow. Results are compared with the experiments. For a more realistic rocket model, the flow past a blunted cone cylinder shape is solved. The leeward or windward jet injection is merged with this flow. The effect on the rocket surface is observed at various flow angles. The lambda effect and the wake structure are found like low attitudes. High interaction between the free stream and the side jet flow is observed when the side jet is injected in the windward direction.

  • PDF

Opportunistic Routing for Bandwidth-Sensitive Traffic in Wireless Networks with Lossy Links

  • Zhao, Peng;Yang, Xinyu
    • Journal of Communications and Networks
    • /
    • 제18권5호
    • /
    • pp.806-817
    • /
    • 2016
  • Opportunistic routing (OR) has been proposed as a viable approach to improve the performance of wireless multihop networks with lossy links. However, the exponential growth of the bandwidth-sensitive mobile traffic (e.g., mobile video streaming and online gaming) poses a great challenge to the performance of OR in term of bandwidth guarantee. To solve this problem, a novel mechanism is proposed to opportunistically forwarding data packets and provide bandwidth guarantee for the bandwidth-sensitive traffic. The proposal exploits the broadcast characteristic of wireless transmission and reduces the negative effect of wireless lossy links. First, the expected available bandwidth (EAB) and the expected transmission cost (ETC) under OR are estimated based on the local available bandwidth, link delivery probability, forwarding candidates, and prioritization policy. Then, the policies for determining and prioritizing the forwarding candidates is devised by considering the bandwidth and transmission cost. Finally, bandwidth-aware routing algorithm is proposed to opportunistically delivery data packets; meanwhile, admission control is applied to admit or reject traffic flows for bandwidth guarantee. Extensive simulation results show that our proposal consistently outperforms other existing opportunistic routing schemes in providing performance guarantee.

국내 지중열전도도 측정 방법의 한계 및 개선 방향 (Limitations and improvement of the in situ measurements of ground thermal conductivity in Korea)

  • 심병완
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.195.2-195.2
    • /
    • 2011
  • The borehole heat exchanger of Geothermal Heat Pump (GHP) system should be sustainable and cost effective for long term operation. To guaranty the performance of the system thermal Response Tests (TRTs) with simple recommended procedures have been applied in many countries. Korea government developed a standard TRT procedure in order to control the quality on GHP projects. In the TRT procedure interpretation method has a rule that data set has to be interpreted by the line source model(LSM). The LSM employes some assumptions that surrounding medium is homogeneous and the line source is infinite and constant heat flux, however real ground condition is unisotropic and heterogeneous, and showing regional or local ground water flows in many cases. We need to develope improved evaluation models to estimate accurate ground thermal conductivity with respect to geological and influence of ground water because current TRT standard test procedure has limitations to be applied for every locations and system. This study surveyed the uncertainty of the thermal parameters from the interpretation method considering different evaluation period. The interpretation of 208 TRT data sets represents limitations of LSM application that some obtained ground thermal conductivities are statistically unstable and convergence time of ground thermal conductivity over test period shows trends responding the length of test period. This evaluation study will be helpful to provide some effective procedure for the thermal parameter estimation and to complement current TRT standard procedure.

  • PDF