• Title/Summary/Keyword: Flow-rate Coefficient

Search Result 933, Processing Time 0.03 seconds

Studies on the Steady State and Dynamic Characteristics of a Carbon Dioxide Air-Conditioning System for Vehicles (자동차용 이산화탄소 냉방 시스템의 정상상태 및 동적 특성에 관한 연구)

  • Park, Min-Su;Kim, Sung-Chul;Kim, Dal-Won;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.531-538
    • /
    • 2007
  • In this study, an air conditioning system using carbon dioxide as a refrigerant was developed for automotive cabin cooling. Experiments have been carried out to examine the steady state and dynamic characteristics of this system. The system consists of a compressor, a gas cooler, an evaporator, an expansion device, an internal heat exchanger and an accumulator. The compressor is a variable displacement type, driven by the electric motor, and the gas cooler and the evaporator are aluminum extruded heat exchangers of micro channel type. The $CO_2-refrigerant$ charge, the compressor speed, the air inlet temperature of the gas cooler, the air inlet temperature and the air flow rate of the evaporator and the cooling load are varied and the performance of the system is experimentally investigated. As the compressor speed increased, cooling capacity increased, but the coefficient of performance was deteriorated. As the cabin air temperature or the air flow rate to the cabin was set high, both the cooling capacity and the COP increased. In the cool down experiment with 1.0 or 2.0 kW of heat load, the dynamic characteristics of the air-conditioning system were investigated. For a given capacity of compressor, cool down speed was monitored, and the temperature change was acceptable fur low heat load condition.

Off-design Characteristics for Ambient Air Temperature and Turbine Load of Gas Turbine Pre-swirl System (가스터빈 프리스월 시스템의 외기 온도와 터빈 부하 조건에 따른 탈설계점 특성 분석)

  • Park, Hyunwoo;Lee, Jungsoo;Cho, Geonhwan;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.881-889
    • /
    • 2019
  • The pre-swirl system is the device that minimizes energy loss of turbine cooling airflow from the stationary parts into rotating parts. In this paper, an off-design analysis was conducted for the ambient air temperature and turbine load conditions. The discharge coefficient was constant for ambient air temperature and turbine load. However, adiabatic effectiveness was increased. This is due to the volume flow rate. The volume flow rate was increased at higher ambient temperature and higher turbine load. It means that the volume of cooling air was increased and the cooling performance of the air was improved. Consequently, adiabatic effectiveness increased by 30.46% at 100% turbine load compared to 20% turbine load. And increased by 18.42% at 55℃ ambient air temperature compared to -20℃ ambient air temperature.

A Study of a Changing of Physical and Chemical Intra-structure on Si-DLC Film during Tribological Test (실리콘 함유 DLC 박막의 마찰마모 시험에 의한 물리적 특성 및 화학적 결합 구조 변화 고찰)

  • Kim, Sang-Gweon;Lee, Jae-Hoon;Kim, Sung-Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.3
    • /
    • pp.127-132
    • /
    • 2011
  • The silicon-containing Diamond-like Carbon (Si-DLC) film as an low friction coefficient coating has especially treated a different silicon content by plasma-enhanced chemical vapor deposition (PECVD) process at $500^{\circ}C$ on nitrided-STD 11 mold steel with (TMS) gas flow rate. The effects of variable silicon content on the Si-DLC films were tested with relative humidity of 5, 30 and 85% using a ball-on-disk tribometer. The wear-tested and original surface of Si-DLC films were analysed for an understanding of physical and chemical characterization, including a changing structure, via Raman spectra and nano hardness test. The results of Raman spectra have inferred a changing intra-structure from dangling bonds. And high silicon containing DLC films have shown increasing carbon peak ratio ($I_D/I_G$) values and G-peak values. In particular, the tribological tested surface of Si-DLC was shown the increasing hardness value in proportional to TMS gas flow rate. Therefore, at same time, the structure of the Si-DLC film was changed to a different intra-structure and increased hardness film with mechanical shear force and chemical reaction.

Visual Demonstration of Simulated Moving Bed (Simulated Moving Bed Chromatography의 시각적 설명)

  • Oh, Nan Suk;Lee, Chong-Ho;Kim, Jin Il;Koo, Yoon-Mo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.360-365
    • /
    • 2005
  • SMB (simulated moving bed) is a continuous chromatographic process by shifting periodically port position. Binary of mixture, Blue dextran and Orange G, was separated by SMB. These components have unique color individually, that is, Blue dextran is blue and Orange G is orange. It is easy to understand SMB process by observing the shift of color changes in SMB. These components was not adsorbed to stationary phase and isolated by difference of size exclusion factor. Mass transfer coefficient was determined by single pulse test under several flow rate conditions. Operation condition was obtained by standing wave theory and optimized for high purities in extract and raffinate streams. Experiment was performed in open loop 4 zone (2-2-2-2) SMB. There are several advantages in open loop SMB, where extract is product for high purity. It is also easy to control flow rate and monitor experimental state during operation. Experimental, extract and raffinate history is well fitted with simulation results, however, column concentration profile is a little different from simulation results. Purities were 99.5% for extract and 98.9% for raffinate and extract and raffinate yields were obtained as 98.9% and 99.4% respectively.

Modelling and packed bed column studies on adsorptive removal of phosphate from aqueous solutions by a mixture of ground burnt patties and red soil

  • Rout, Prangya R.;Dash, Rajesh R.;Bhunia, Puspendu
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.231-251
    • /
    • 2014
  • The present study examines the phosphate adsorption potential and behavior of mixture of Ground Burnt Patties (GBP), a solid waste generated from cooking fuel used in earthen stoves and Red Soil (RS), a natural substance in fixed bed column mode operation. The characterization of adsorbent was done by Proton Induced X-ray Emission (PIXE), and Proton Induced ${\gamma}$-ray Emission (PIGE) methods. The FTIR spectroscopy of spent adsorbent reveals the presence of absorbance peak at $1127cm^{-1}$ which appears due to P = O stretching, thus confirming phosphate adsorption. The effects of bed height (10, 15 and 20 cm), flow rate (2.5, 5 and 7.5 mL/min) and initial phosphate concentration (5 and 15 mg/L) on breakthrough curves were explored. Both the breakthrough and exhaustion time increased with increase in bed depth, decrease in flow rate and influent concentration. Thomas model, Yoon-Nelson model and Modified Dose Response model were used to fit the column adsorption data using nonlinear regression analysis while Bed Depth Service Time model followed linear regression analysis under different experimental condition to evaluate model parameters that are useful in scale up of the process. The values of correlation coefficient ($R^2$) and the Sum of Square Error (SSE) revealed the Modified Dose Response model as the best fitted model to the experimental data. The adsorbent mixture responded effectively to the desorption and reusability experiment. The results of this finding advocated that mixture of GBP and RS can be used as a low cost, highly efficient adsorbent for phosphate removal from aqueous solution.

Evaluation of Permeability and Related Soil Characteristics Based on Pore Pressure Measurement during Consolidation by Radial Drainage (방사배수 압밀 중 위치별 간극수압 측정을 통한 투수계수와 관련물성치의 결정방법)

  • Yune, Chan-Young;Chun, Sung-Ho;Chung, Choog-Ki;Lee, Won-Tekg
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.9-17
    • /
    • 2008
  • In this research, an analytical solution for the coefficient of permeability of soils during consolidation is suggested. The pore pressure and the flow rate measurements at different locations during consolidation are utilized. The void ratio and volume compressibility of soils under consolidation are also estimated. A large consolidation testing device, possible in both vertical and radial drainage is designed and manufactured. And consolidation test with kaolinite soils were performed under radially inward drainage direction. Pore pressures in varying radial distances and flow rate with time were measured as well as vertical deformations. From the test results, the changes of permeability, volume compressibility and void ratio under consolidation and their spatial variations are estimated. Thus the proposed solution is verified by comparing with the experimentally estimated test results. In addition, it is confirmed that permeability, void ratio and volume compressibility decrease as consolidation and loading steps progress. Also, these soil characteristics increase with radial distant from drainage boundary, where lowest values observed, and slightly decrease as approaching undrained boundary.

A Study on a Quantitative Method in Estimating Forest Effects for Streamflow Regulation (II) - Mainly Dealing with Application of Coefficient for Slope Roughness - (삼림이수기능(森林理水機能)의 정량적(定量的) 평가방법(平價方法)에 관한 연구(硏究)(II) - 조도계수(粗度係數)의 응용(應用)을 중심(中心)으로 -)

  • Lee, Heon Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.4
    • /
    • pp.337-345
    • /
    • 1992
  • In this research, a kinematic wave model was applied for the runoff analysis, Regulation of streamflow was estimated by the calibration of roughness coefficient as a parameter. The data analyzed were obtained from Ananomiya and Shirasaka experimental basins at Tokyo University Forest in Aichi. Estimation methods and characteristics of roughness coefficient as a evaluation method of hydrological function of forest are summarized as follows ; 1. Roughness coefficient($N_s$) indicates the resistance of hillslope to the flowing water of surface runoff. There exists an hypothesis that resistance of hillslope to flowing water increase with the growth forest and development of the $A_o$ layer. 2. Roughness coefficient($N_s$) was estimated by the parameter when the stream direct runoff was calculated by using the kinematic wave. 3. Secular change of '$N_s$' in ananomiya has a curve which has an upper limit and increases exponentially near the limit. The curve quickly increased from 1935 to 1945 when results of afforestation for erosion control were thought to be effective. On the other hand, slight increase of '$N_s$' in Shirasaka indicates that there was not such a big change in the surface of soil layer. 4. The increase of '$N_s$' was related with decrease of direct runoff and increase of base flow. It was recognized that the rate of direct runoff decreased with the improvement of forest physiognomy and the rate of base flow was increased. But absolute value of water runoff per one storm decreased in chronological order.

  • PDF

Numerical Analysis of Grout Flow and Injection Pressure Affected by Joint Roughness and Aperture (절리 거칠기와 간극 변화에 따른 그라우트 유동과 주입압에 관한 수치해석적 연구)

  • Jeon, Ki-Hwan;Ryu, Dong-Woo;Kim, Hyung-Mok;Park, Eui-Seob;Song, Jae-Jun
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.82-91
    • /
    • 2010
  • Grouting technology is one of the ground improvement methods used in water controlling and reinforcement of rock mass in underground structure construction. It is necessarily required to find out the characteristics of grout flow through discontinuities in a rock mass for an adequate grout design and performance assessment. Laminar flow is not always applicable in simulating a grout flow in a rock mass, since the rock joints usually have apertures at a micro-scale and the flow through these joints is affected by the joint roughness and the velocity profile of the flow changes partially near the roughness. Thus, the influence of joint roughness and aperture on the grout flow in rough rock joint was numerically investigated in this study. The commercial computational fluid dynamics code, FLUENT, was applied for this purpose. The computed results by embedded Herschel-Bulkley model and VOF (volume of fluid) model, which are applicable to simulate grout flow in a narrow rock joint that is filled with air and water, were well compared with that of analytical results and previously published laboratory test for the verification. The injection pressure required to keep constant injection rate of grout was calculated in a variety of Joint Roughness Coefficient (JRC) and aperture conditions, and the effect of joint roughness and aperture on grout flow were quantified.

Effect of Heat Treatment on the Gas Permeability, Sound Absorption Coefficient, and Sound Transmission Loss of Paulownia tomentosa Wood (참오동나무의 열처리가 기체투과성, 흡음율과 음향투과손실에 미치는 영향)

  • KANG, Chun-Won;JANG, Eun-Suk;JANG, Sang-Sik;Cho, Jae-Ik;KIM, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.644-654
    • /
    • 2019
  • In this study, the gas permeability, sound absorption coefficient, and sound transmission loss of the Paulownia tomentosa wood were estimated using capillary flow porometry, transfer function method, and transfer matrix method, respectively. The longitudinal specific permeability constant of the Paulownia tomentosa wood with a thickness of 20 mm was 0.254 for the control sample and 0.279, 0.314, and 0.452 after being subjected to heat treatments at $100^{\circ}C$, $160^{\circ}C$, and $200^{\circ}C$, respectively. The gas permeability was observed to be slightly increased by the heat treatment. The mean sound absorption coefficients of 20-mm thick Paulownia tomentosa log cross-section for the control sample and after being subjected to heat treatments at $100^{\circ}C$, $160^{\circ}C$, and $200^{\circ}C$ were 0.101, 0.109, 0.096 and 0.106, respectively. Further, the noise reduction coefficients of 20-mm thick Paulownia tomentosa log cross-section of the control sample and after being subjected to heat treatment at temperatures of $100^{\circ}C$, $160^{\circ}C$, and $200^{\circ}C$ were 0.060, 0.067, 0.062 and 0.071, respectively. The mean of sound transmission loss of the 20-mm thick Paulownia tomentosa log cross-section was approximately 36.93 dB. Furthermore, the gas permeability and sound absorption coefficient of the heat-treated Paulownia tomentosa discs slightly increased depending on the heat treatment temperature; however, the rate of increase was insignificant.

Analysis on Heat Loss of Single-span Greenhouse Using Small-scaled Wind Tunnel (소형풍동을 이용한 단동 비닐온실의 열손실 분석)

  • Kim, Young Hwa;Kim, Hyung kow;Lee, Tae suk;Oh, Sung sik;Ryou, Young sun
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.73-79
    • /
    • 2020
  • The objective of this study is to analyze the heat transfer loss of covering materials in a single-span plastic greenhouse under the steady-state wind environment. To achieve this objective, the following were conducted: (1) design of a small-scaled wind tunnel (SCWT) to analyze heat losses of the greenhouse and its performance; (2) determination of the overall heat transfer coefficient (OHTC) for the covering materials using a small-scaled greenhouse model. The SCWT consists of the blowing, dispersion, steady flow, reduction and testing areas. Each part of the SCWT was customized and designed to maintain air flow at steady state and to minimize the variances in the SCWT test. In this study, the OHTCs of the covering materials were calculated by separating each with the roof, side wall, front and back of the small-scaled greenhouse model. The results of this study show that the OHTC of the roof increases as wind speed increases but the zones in which the increase rate of the OHTC decreased, were distinguished by wind tunnel wing speed of 2 ms-1. For the side wall, the increase rate of the OHTC was particularly higher in the 0-1 ms-1 zone.