• Title/Summary/Keyword: Flow-based

Search Result 11,982, Processing Time 0.038 seconds

A Preconditioning Method for Two-Phase Flows with Cavitation

  • Shin B.R.;Yamamoto S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.181-182
    • /
    • 2003
  • A preconditioned numerical method for gas-liquid to-phase flow is applied to solve cavitating flow. The present method employs a density based finite-difference method of dual time-stepping integration procedure and Roe's flux difference splitting approximation with MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. The method permits simple treatment of the whole gas-liquid two-phase flow field including wave propagation, large density changes and incompressible flow characteristics at low Mach number. By this method, two-dimensional internal flows through a venturi tuve and decelerating cascades are computed and discussed.

  • PDF

Study on the Security-Constrained Optimal Power Flow (상정사고를 고려한 최적조류계산 연구)

  • Choi, Kil;Won, Jong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.381-383
    • /
    • 2002
  • This paper proposes a MATLAB program for solving security-constrained optimal power flow using linear programming. Security-constrained optimal power flow can find an optimal generation satisfying bus voltage limits, line flow limits, reactive generation limits, even if contingency occurs. Sensitivity matrixes are obtained based on power flow solutions with and without single line contingency. This program is tested for an IEEE 14bus system with 5 generators Results shows good ability of finding optimal solution in case of a single line contingency.

  • PDF

Numerical Simulation Model of Alternative Refrigerants Flow Through Capillary Tubes (대체냉매의 모세관내 유동 시뮬레이션)

  • 장세동;노승택
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.55-64
    • /
    • 1996
  • A numerical model of refrigerant flow through a capillary tube is developed, which considers the effects of underpressure for vaporization, kinetic energy, and roughness of capillary tube. The numerical model is based on homogeneous flow assumptions for the two-phase flow region. A characteristic chart of HFC refrigerants flow through capillary tubes and correction factor chart of geometry and relative roughness of capillary tube to select a proper capillary for refrigerating machines using alternative refrigerants is presented by this numerical model.

  • PDF

Effect of Augmented Reality Contents Based Instruction on Academic Achievement, Interest and Flow of Learning (증강현실 콘텐츠 기반 수업이 학업성취, 학습흥미, 몰입에 미치는 효과)

  • Noh, Kyung-Hee;Jee, Hyung-Keun;Lim, Suk-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.1-13
    • /
    • 2010
  • The purpose of this experimental study is to find out the effect of augmented reality contents based instruction on academic achievement, interest and flow of learning. The subjects were 142 students of five classes, sampled from 6th graders of an elementary school. Three classes(86 students) were taught by augmented reality based instruction and the other two classes(56 students) were taught by textbook based instruction for 2 weeks. The experimental design of the study was the pretest-posttest control group design. The results are summarized as follows: First, there is a significant difference in academic achievement between two groups. Augmented reality based instruction group accomplished higher achievement than textbook based instruction group. Second, there is no significant difference in general interest of learning between two groups. But in the interest of lessons taken by students themselves, augmented reality based instruction is more effective than textbook based instruction. Finally, there is a significant difference in learning flow between two groups. Augmented reality based instruction group showed higher learning flow than textbook based instruction group.

PREDICTION OF SEPARATION TRAJECTORY FOR TSTO LAUNCH VEHICLE USING DATABASE BASED ON STEADY STATE ANALYSIS (정상 해석 기반의 데이터베이스를 이용한 TST 비행체의 분리 궤도 예측)

  • Jo, J.H.;Ahn, S.J.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.86-92
    • /
    • 2014
  • In this paper, prediction of separation trajectory for Two-stage-To-Orbit space launch vehicle has been numerically simulated by using an aerodynamic database based on steady state analysis. Aerodynamic database were obtained for matrix of longitudinal and vertical positions. The steady flow simulations around the launch vehicle have been made by using a 3-D RANS flow solver based on unstructured meshes. For this purpose, a vertex-centered finite-volume method was adopted to discretize inviscid and viscous fluxes. Roe's finite difference splitting was utilized to discretize the inviscid fluxes, and the viscous fluxes were computed based on central differencing. To validate this flow solver, calculations were made for the wind-tunnel experiment model of the LGBB TSTO vehicle configuration on steady state conditions. Aerodynamic database was constructed by using flow simulations based on test matrix from the wind-tunnel experiment. ANN(Artificial Neural Network) was applied to construct interpolation function among aerodynamic variables. Separation trajectory for TSTO launch vehicle was predicted from 6-DOF equation of motion based on the interpolated function. The result of present separation trajectory calculation was compared with the trajectory using experimental database. The predicted results for the separation trajectory shows fair agreement with reference[4] solution.

End-to-End Congestion Control of High-Speed Gigabit-Ethernet Networks based on Smith's Principle

  • Lee, Seung-Hyub;Cho, Kwang-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.101-104
    • /
    • 2000
  • Nowadays, the issue of congestion control in high-speed communication networks becomes critical in view of the bandwidth-delay products for efficient data flow. In particular, the fact that the congestion is often accompanied by the data flow from the high-speed link to low-speed link is important with respect to the stability of closed-loop congestion control. The Virtual-Connection Network (VCN) in Gigabit Ethernet networks is a packet-switching based network capable of implementing cell- based connection, link-by-link flow-controlled connection, and single- or multi-destination virtual connections. VCN described herein differ from the virtual channel in ATM literature in that VCN have link-by-link flow control and can be of multi-destination. VCNs support both connection-oriented and connectionless data link layer traffic. Therefore, the worst collision scenario in Ethernet CSMA/CD with virtual collision brings about end-to-end delay. Gigabit Ethernet networks based on CSMA/CD results in non-deterministic behavior because its media access rules are based on random probability. Hence, it is difficult to obtain any sound mathematical formulation for congestion control without employing random processes or fluid-flow models. In this paper, an analytical method for the design of a congestion control scheme is proposed based on Smith's principle to overcome instability accompanied with the increase of end-to-end delays as well as to avoid cell losses. To this end, mathematical analysis is provided such that the proposed control scheme guarantees the performance improvement with respect to bandwidth and latency for selected network links with different propagation delays. In addition, guaranteed bandwidth is to be implemented by allowing individual stations to burst several frames at a time without intervening round-trip idle time.

  • PDF

Application of Web-based Load Duration Curve System to TMDL Watersheds for Evaluation of Water Quality and Pollutant Loads (수질오염총량제도 유역의 수질 및 부하량 평가를 위한 웹기반 LDC 시스템의 적용)

  • Kang, Hyunwoo;Ryu, Jichul;Shin, Minhwan;Choi, Joongdae;Choi, Jaewan;Shin, Dong Seok;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.689-698
    • /
    • 2011
  • In South Korea, Total Maximum Daily Load (TMDL) has been enforced since 2004 to restore and manage water quality in the watersheds. However, the appraisal of TMDL in South Korea has lots of weaknesses to establish the plan for recovery of water quality because it just evaluates the target water quality during the particular flow duration interval. In the United States, Load Duration Curve (LDC) method bas been widely used in the TMDL to evaluate the water quality and pollutant loads considering variation of stream flow. In a recent study, web-based Load Duration Curve system was developed to create the LDC automatically and provide the convenience of use. In this study, web-based Load Duration Curve system was applied in the Gapyeongcheon watershed using the daily flow and 8-day interval water quality data, and Q-L Rating Curve was used to evaluate the water quality and pollutant load in the watershed, also. As a result of study, water quality and pollutant load in Gapyeongcheon watershed were met with water quality standard and allocated load in the all flow durations. Web-based Load Duration Curve system could be applied to the appraisal of South Korean TMDL because it can be used to judge the impaired flow duration and build up the plan of load reduction, and it could enhance the publicity. But, web-based Load Duration Curve system should be enhanced through addition of load assessment tools such as Q-L rating curve to evaluate water quality and pollutant load objectively.

Hierarchical Flow-Based Anomaly Detection Model for Motor Gearbox Defect Detection

  • Younghwa Lee;Il-Sik Chang;Suseong Oh;Youngjin Nam;Youngteuk Chae;Geonyoung Choi;Gooman Park
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1516-1529
    • /
    • 2023
  • In this paper, a motor gearbox fault-detection system based on a hierarchical flow-based model is proposed. The proposed system is used for the anomaly detection of a motion sound-based actuator module. The proposed flow-based model, which is a generative model, learns by directly modeling a data distribution function. As the objective function is the maximum likelihood value of the input data, the training is stable and simple to use for anomaly detection. The operation sound of a car's side-view mirror motor is converted into a Mel-spectrogram image, consisting of a folding signal and an unfolding signal, and used as training data in this experiment. The proposed system is composed of an encoder and a decoder. The data extracted from the layer of the pretrained feature extractor are used as the decoder input data in the encoder. This information is used in the decoder by performing an interlayer cross-scale convolution operation. The experimental results indicate that the context information of various dimensions extracted from the interlayer hierarchical data improves the defect detection accuracy. This paper is notable because it uses acoustic data and a normalizing flow model to detect outliers based on the features of experimental data.

Fundamental Study of Mix Proportions of High-Flow Cement-Based Mortar for Gravel-Fill Used in Restoration of Collapsed Roads (도로유실 복구를 위한 골재 충전 고흐름도 모르타르의 기초 배합 연구)

  • Cho, Hyun Myung;Jeon, Sang Pyo;Kim, Seung Won;Yun, Kyong Ku;Park, Cheol Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.63-70
    • /
    • 2015
  • PURPOSES: As a part of our research into repair techniques for roads that have collapsed as a result of a natural disaster, this study set out to find the optimum mix proportion for gravels to be used to restore a damaged area. METHODS: This study considered flow and strength-development characteristics. The experimental variables were the W/C ratio, the usage of the admixture, the types of cement, and the quantity of fine aggregate over three different experimental stages. The compressive strength was measured at 12 hours, one day, three days, and seven days. RESULTS : The flow varied with the amount of fine aggregate and the use of a high-range water-reducing (HRWR) admixture. The compressive strength also varied with respect to the type of cement and the W/C ratios. The strength satisfied the expected requirement of 21 MPa after one day, provided the mix proportion was appropriate. CONCLUSIONS: A gravel-filling high-flow cement-based mortar exhibited strength and consistency with a W/C ratio in the range of 0.40 to 0.45, assuming the use of HRWR at 0.5 to 0.7% and a fine aggregate/cement ratio of 1.0 to 1.5.

Experimental Methodology Development for SFR Subchannel Analysis Code Validation with 37-Rods Bundle (소듐냉각고속로 부수로 해석코드 검증을 위한 37봉다발 실험방법 개념 개발)

  • Euh, Dong-Jin;Chang, Seok-Kyu;Bae, Hwang;Kim, Seok;Kim, Hyung-Mo;Choi, Hae-Seob;Choi, Sun-Rock;Lee, Hyung-Yeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.89-94
    • /
    • 2014
  • The 4th generation SFR is being designed with a milestone of construction by 2028. It is important to understand the subchannel flow characteristics in fuel assembly through the experimental investigations and to estimate the calculation uncertainties for insuring the confidence of the design code calculation results. The friction coefficient and the mixing coefficient are selected as primary parameters. The two parameters are related to the flow distribution and diffusion. To identify the flow distribution, an iso-kinetic method was developed based on the previous study. For the mixing parameters, a wire mesh system and a laser induced fluorescence methods were developed in parallel. The measuring systems were adopted on 37 rod bundle test geometry, which was developed based on the Euler number scaling. A scaling method for a design of experimental facility and the experimental identification techniques for the flow distribution and mixing parameters were developed based on the measurement requirement.