• 제목/요약/키워드: Flow-Rate Uniformity

검색결과 185건 처리시간 0.024초

용융탄산염 연료전지 Anode 유로 채널에서의 가스 유동 분포에 관한 수치해석적 연구 (Numerical Analysis of the Gas Flow Distribution Characteristics in the Anode Flow Channel of Molten Carbonate Fuel Cell (MCFC))

  • 조준현;하태훈;김한상;민경덕;박종훈;장인갑;이태원
    • 대한기계학회논문집B
    • /
    • 제33권11호
    • /
    • pp.834-839
    • /
    • 2009
  • A three-dimensional computational fluid dynamics (CFD) analysis is performed to investigate flow characteristics in the anode channels and manifold of the internal reforming type molten carbonate fuel cell (MCFC). Considering the computational difficulties associated with the size and geometric complexity of the MCFC system, the polyhedral meshes that can reduce mesh connectivity problems at the intersection of the channel and the manifold are adopted and chemical reactions inside the MCFC system are not included. Through this study, the gas flow rate uniformity of the anode channels is mainly analyzed to provide basic insights into improved design parameters for anode flow channel design. Results indicate that the uniformity in flow-rate is in the range of ${\pm}$1% between the anode channels. Also, the mal-distributed inlet flow-rate conditions and the change in the size of the manifold depth have no significant effect on the flow-rate uniformity of the anode channels.

용융탄산염 연료전지 anode 유로 채널에서의 가스 유동 분포에 관한 수치해석적 연구 (Numerical analysis of the gas flow distribution characteristics in the anode flow channel of the molten carbonate fuel cell (MCFC))

  • 조준현;하태훈;김한상;민경덕;박종훈;장인갑;이태원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3120-3124
    • /
    • 2008
  • A three-dimensional computational fluid dynamics (CFD) analysis is performed to investigate flow characteristics in the anode channels and manifold of the internal reforming type molten carbonate fuel cell (MCFC). Considering the computational difficulties associated with the size and geometric complexity of the MCFC system, the polyhedral meshes that can reduce mesh connectivity problems at the intersection of the channel and the manifold are adopted and chemical reactions inside the MCFC system are not included. Through this study, the gas flow rate uniformity of the anode channels is mainly analyzed to provide basic insights into improved design parameters for anode flow channel design. Results indicate that the uniformity in flow-rate is in the range of ${\pm}1%$ between the anode channels. Also, the mal-distributed inlet flow-rate conditions and the change in the size of the manifold depth have no significant effect on the flow-rate uniformity of the anode channels.

  • PDF

Numerical Analysis of Flow Uniformity in Selective Catalytic Reduction (SCR) Process Using Computational Fluid Dynamics (CFD)

  • Shon, Byung-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • 제10권3호
    • /
    • pp.295-306
    • /
    • 2022
  • The NOx removal performance of the SCR process depends on various factors such as catalytic factors (catalyst composition, shape, space velocity, etc.), temperature and flow rate distribution of the exhaust gas. Among them, the uniformity of the flow flowing into the catalyst bed plays the most important role. In this study, the flow characteristics in the SCR reactor in the design stage were simulated using a three-dimensional numerical analysis technique to confirm the uniformity of the airflow. Due to the limitation of the installation space, the shape of the inlet duct was compared with the two types of inlet duct shape because there were many curved sections of the inlet duct and the duct size margin was not large. The effect of inlet duct shape, guide vane or mixer installation, and venturi shape change on SCR reactor internal flow, airflow uniformity, and space utilization rate of ammonia concentration were studied. It was found that the uniformity of the airflow reaching the catalyst layer was greatly improved when an inlet duct with a shape that could suppress drift was applied and guide vanes were installed in the curved part of the inlet duct to properly distribute the process gas. In addition, the space utilization rate was greatly improved when the duct at the rear of the nozzle was applied as a venturi type rather than a mixer for uniform distribution of ammonia gas.

풍동장치 내 공기 유동장과 속도 균일도 특성에 대한 분석 (A Study on the Characteristics of Air flow Fields with Velocity Uniformity in a Wind Tunnel)

  • 한석종;이상호;이재규
    • 한국가시화정보학회지
    • /
    • 제16권3호
    • /
    • pp.59-64
    • /
    • 2018
  • Numerical simulations were carried out to analyze the flow characteristics of the wind tunnel. Flow field characteristics with velocity uniformity at the test sections are largely affected by inlet conditions of air flow rate and temperature. Axial average velocity of the flow field inside the test area was almost linearly decreased by 0.026% each 1m. The uniformity distributions of axial velocity showed the highest reduction rate of about 24% between nozzle outlets 1 ~ 2m. In addition, average velocity and the uniformity are increased with air temperature in the wind tunnel due to density variation. The results of this paper are expected to be useful for the basic design of wind tunnel and to be used for efficient design.

1 톤급 양산형 진공 침탄로에서 아세틸렌 유량과 로 내 위치에 따른 AISI 4115 강의 침탄 거동 (Carburizing Behavior of AISI 4115 Steel with a Flow Rate of Acetylene and Specimen Location in an 1 ton-class Mass Production-type Vacuum Carburizing Furnace)

  • 권기훈;문경일;박현준;이영국;정민수
    • 열처리공학회지
    • /
    • 제34권6호
    • /
    • pp.272-280
    • /
    • 2021
  • The influence of acetylene flow rates on the carburizing behavior of an AISI 4115 steel in 1 ton-class mass production-type vacuum carburizing furnace has been studied through microstructure, carbon concentration, hardness analyses. The AISI 4115 steels were carburized with various flow rates (20, 32.7, 60 l/min) and locations in the furnace (top, center, bottom) at 950℃. The acetylene flow rate played an important role in controlling the carburizing properties of carburized samples, such as effective case depth and uniformity carburizing according to location in the furnace. At an acetylene flow rate of 20 l/min, the carburized samples had a shallow average hardened layer (0.645 mm) compared to the target hardening depth (1 mm) due to low carbon flux and spatial uniformity of carburization (17.8%) in the furnace. At a flow rate of 60 l/min, the carburized samples showed an average hardened layer (1.449 mm) deeper than the target hardening depth and had the spatial uniformity of carburization (98.8%). In particular, at a flow rate of 32.7 l/min, the carburized samples had an average hardened layer (1.13 mm) close to the target hardening depth and had the highest carburizing uniformity (99.1%). As a result, an appropriate flow rate of 32.7 l/min was derived to satisfy the target hardening depth and to have spatial uniform hardened layer in the furnace.

Simulation of Inductively Coupled $Ar/O_2$ Plasma; Effects of Operating Conditions on Plasma Properties and Uniformity of Atomic Oxygen

  • Park, Seung-Kyu;Kim, Jin-Bae;Kim, Heon-Chang
    • 반도체디스플레이기술학회지
    • /
    • 제8권4호
    • /
    • pp.59-63
    • /
    • 2009
  • This paper presents two dimensional simulation results of an inductively coupled $Ar/O_2$ plasma reactor. The effects of operating conditions on the plasma properties and the uniformity of atomic oxygen near the wafer were systematically investigated. The plasma density had the linear dependence on the chamber pressure, the flow rate of the feed gas and the power deposited into the plasma. On the other hand, the electron temperature decreased almost linearly with the chamber pressure and the flow rate of the feed gas. The power deposited into the plasma nearly unaffected the electron temperature. The simulation results showed that the uniformity of atomic oxygen near the wafer could be improved by lowering the chamber pressure and/or the flow rate of the feed gas. However, the power deposited into the plasma had an adverse effect on the uniformity.

  • PDF

수평 화학기상증착 반응기의 입구형상 설계가 단결정 박막증착률 특성에 미치는 영향에 관한 수치적 연구 (Numerical study of the influence of inlet shape design of a horizontal MOCVD reactor on the characteristics of epitaxial layer growth)

  • 정수진;김소정
    • 한국결정성장학회지
    • /
    • 제13권5호
    • /
    • pp.247-253
    • /
    • 2003
  • 본 연구에서는 반응기의 유입 확대부의 형상이 반응기 내의 유동 및 증착특성에 미치는 영향을 연구하기 위하여 수평형 MOCVD 반응기에서 TMGa와 $AsH_3$로부터의 GaAs 증착에 관한 수치적 연구를 수행하였다. 두 개의 기하학적인자(확대각, 확대부 형상)가 증착률, 증착률 균일도. 유속 균일도, 압력강하에 미치는 영향을 연구하였다 웨이퍼 위에서의 증착률 균일도, 평균증착률, 유속 균일도를 고려한 결과, 직선형 확대부의 최적 확대각은 $50^{\circ}$$55^{\circ}$이며 포물선형 확대부의경우, $40^{\circ}$$45^{\circ}$이다. 또한 확대부의 확대각의 변화는 평균증착률 보다 증착률의 균일도에 큰 영향을 미치고 있음을 알 수 있으며 직선확대부보다 포물선형의 확대부에서 더 민감하게 나타남을 알 수 있었다.

SiH$_4$-H$_2$계에서 유체유동이 Si의 화학증착에 미치는 영향 (Effects of Flow on the Chemical Vapor Deposition of Si in System SiH$_4$-H$_2$)

  • 조성욱;이경우;조영환;윤종규
    • 한국표면공학회지
    • /
    • 제23권3호
    • /
    • pp.160-166
    • /
    • 1990
  • The effects of the variation of proedd varibles on the flow patterns and effects of the flow patterns on the deposition rate and uniformity in the Si-epitaxy CVD with SiH4 as the source of Si were studied through the calculation by use of control volume method. The reslts showed that the natural convection was undesirable to the uniformity of deposition rate, whose effects were decreased with the dercrese with the decrese of the pressure in the reactoor and with the increase of the flow rate. However. the excessive increase of flow rate caused the movement of the unreacted gas to the substrate. Therefore it resulted in the non-uniform depositions. The rotation of substrate was apperared to improve the uniformity. The resulte of this study could used in CVD process to design the reator and to find the optimum conditions of the process variables.

  • PDF

간접 내부 개질형 용융탄산염 연료전지 anode 채널에서의 압력 강하 및 온도 조건 변경에 따른 유량 균일도에 관한 수치 해석적 연구 (Numerical analysis of the gas flow-rate uniformity in the anode flow channel of indirect internal reforming molten carbonate fuel cell (MCFC) under different pressure drop and temperature conditions)

  • 조준현;하태훈;김한상;민경덕;박종훈;장인갑;이태원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.127-130
    • /
    • 2009
  • The uniform gas distribution between anode channels of the indirect internal reforming type molten carbonate fuel cell (MCFC) is crucial design parameter because of the electric performance and the durability problems. A three-dimensional computational fluid dynamics (CFD) analysis is performed to investigate flow characteristics in the anode channels and manifold under different pressure drop and channel temperature conditions. The combined meshes consists of hexadral meshes in the channels and polyhedral meshes in the manifold are adopted and chemical reactions inside the MCFC system are not included because of computational difficulties associated with the size and geometric complexity of the system. Results indicate that the uniformity in flow-rate is in the range of $\pm$ 0.048 % between the anode channels when the pressure drop of anode channel is about 150 Pa. A gas flow-rate uniformity decreases as the pressure drop of anode channels decreases and as the temperature difference between indirect internal reforming (IIR) channels and anode channels increases.

  • PDF

MERIE형 반응로를 이용한 AlSi의 식각 특성 (Properties of AlSi etching using the MERIE type reactor)

  • 김창일;김태형;장의구
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권2호
    • /
    • pp.188-195
    • /
    • 1996
  • The AlSi etching process using the MERIE type reactor carried out with different process parameters such as C1$_{2}$ and N$_{2}$ gas flow rate, RF power and chamber pressure. The etching characteristics were evaluated in terms of etch rate, selectivity, uniformity and etched profile. As the N2 gas flow rate is increased, the AlSi etch rate is decreased and uniformity has remained constant within .+-.5%. The etch rate is increased and uniformity is decreased, according to increment of the C1$_{2}$ gas flow rate, RF power and chamber pressure. Selective etching of TEOS with respect to AlSi is decreased as the RF power is increased while it is increased by increment of the C1$_{2}$ gas flow rate and chamber pressure, on the other hand, selective etching of photoresist with respect to AlSi is increased by increment of the C1$_{2}$ gas flow rate and chamber pressure, it is decreased as the N$_{2}$ gas flow rate is increased.

  • PDF